Limit theorems for decoherent two dimensional quantum walks

被引:0
作者
Clement Ampadu
机构
来源
Quantum Information Processing | 2012年 / 11卷
关键词
Limit theorems; Decoherence; Quantum random walk;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the model with decoherence operators introduced by Brun et al. (Phys Rev A 67:032304, 2003) which has recently been considered in the two-dimensional setting by Ampadu (Commun Theor Phys, 2011) to obtain the limit of the decoherent quantum walk.
引用
收藏
页码:1921 / 1929
页数:8
相关论文
共 50 条
[31]   Quantum Random Walks in One Dimension [J].
Norio Konno .
Quantum Information Processing, 2002, 1 :345-354
[32]   Quantum trajectories. Spectral gap, quasi-compactness & limit theorems [J].
Benoist, Tristan ;
Hautecoeur, Arnaud ;
Pellegrini, Clement .
JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 289 (05)
[33]   Limit theorems related to the integral functionals of one dimensional fractional Brownian motion [J].
Yu, Xianye ;
Zhang, Mingbo .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (24) :5908-5916
[34]   Limit Theorems for the One-Dimensional Random Walk with Random Resetting to the Maximum [J].
Van Hao Can ;
Thai Son Doan ;
Van Quyet Nguyen .
Journal of Statistical Physics, 2021, 183
[35]   Limit Theorems for the One-Dimensional Random Walk with Random Resetting to the Maximum [J].
Can, Van Hao ;
Doan, Thai Son ;
Nguyen, Van Quyet .
JOURNAL OF STATISTICAL PHYSICS, 2021, 183 (02)
[36]   Relation between random walks and quantum walks [J].
Boettcher, Stefan ;
Falkner, Stefan ;
Portugal, Renato .
PHYSICAL REVIEW A, 2015, 91 (05)
[37]   Decoherent dynamics of quantum correlations in qubit-qutrit systems [J].
Guo, Jin-Liang ;
Li, Hui ;
Long, Gui-Lu .
QUANTUM INFORMATION PROCESSING, 2013, 12 (11) :3421-3435
[38]   Eigenvalues of Two-State Quantum Walks Induced by the Hadamard Walk [J].
Endo, Shimpei ;
Endo, Takako ;
Komatsu, Takashi ;
Konno, Norio .
ENTROPY, 2020, 22 (01) :127
[39]   Multidimensional Quantum Walks [J].
Jeffery, Stacey ;
Zur, Sebastian .
PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, :1125-1130
[40]   AN IMAGE ENCRYPTION SYSTEM BASED ON 2-DIMENSIONAL QUANTUM RANDOM WALKS [J].
Li, Lingfeng ;
Pang, Bo ;
Tang, Yuanyan .
2017 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2017, :93-98