A posteriori error estimates for mixed finite element approximations of parabolic problems

被引:0
|
作者
Mats G. Larson
Axel Målqvist
机构
[1] Umeå University,Department of Mathematics
[2] Uppsala University,Department of Information Technology
来源
Numerische Mathematik | 2011年 / 118卷
关键词
65M60;
D O I
暂无
中图分类号
学科分类号
摘要
We derive residual based a posteriori error estimates for parabolic problems on mixed form solved using Raviart–Thomas–Nedelec finite elements in space and backward Euler in time. The error norm considered is the flux part of the energy, i.e. weighted L2(Ω) norm integrated over time. In order to get an optimal order bound, an elementwise computable post-processed approximation of the scalar variable needs to be used. This is a common technique used for elliptic problems. The final bound consists of terms, capturing the spatial discretization error and the time discretization error and can be used to drive an adaptive algorithm.
引用
收藏
页码:33 / 48
页数:15
相关论文
共 50 条