A Note on the Value Distribution of f′(z)-afk(z)-b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{\prime }(z)-af^k(z)- b$$\end{document}

被引:0
作者
Pai Yang
Jinhua Yang
Xuecheng Pang
机构
[1] Chengdu University of Information Technology,College of Applied Mathematics
[2] Xinjiang Normal University,School of Mathematical Sciences
[3] East China Normal University,Department of Mathematics
关键词
Meromorphic function; Value distribution; Normal family; 30D35; 30D45;
D O I
10.1007/s40315-020-00300-5
中图分类号
学科分类号
摘要
Let a(≠0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(\ne 0)$$\end{document}, b be finite complex numbers, and k≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 3$$\end{document} be a positive integer. If f is a meromorphic function of order ρ>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho >2$$\end{document}, then f′-afk-b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{\prime }-af^k-b$$\end{document} has infinitely many zeros on the complex plane.
引用
收藏
页码:85 / 94
页数:9
相关论文
共 14 条
  • [1] Hayman WK(1959)Picard values of meromorphic functions and their derivatives Ann. Math. 70 9-42
  • [2] Mues E(1979)Über ein problem von Hayman Math. Z. 164 239-259
  • [3] Pang XC(1990)On normal criterion of meromorphic functions Sci China (Ser. A) 33 521-527
  • [4] Pang XC(2000)Normal families and shared values Bull. Lond. Math. Soc. 32 325-331
  • [5] Zalcman L(2001)On theorems of Yang and Schwick Complex Var. Elliptic Equ. 46 315-321
  • [6] Nevo S(1998)Normal families: new perspectives Bull. Amer. Math. Soc. 35 215-230
  • [7] Zalcman L(2001)Applications of Zalcman’s lemma to Qm-normal families Analysis (Munich) 21 289-325
  • [8] Nevo S(2006)Bloch’s principle Comput. Methods Funct. Theory 6 77-108
  • [9] Bergweiler W(1998)Picard values and normal families of meromorphic functions with multiple zeros Acta. Math. Sin. (New Ser) 14 17-26
  • [10] Wang YF(2017)A Picard type theorem concerning meromorphic functions of hyper-order(in Chinese) Sci Sin Math 47 357-370