Action of Moving Loads on the Bernoulli-Euler and Timoshenko Beams

被引:0
|
作者
T. I. Zhdan
机构
[1] Moscow State University,Faculty of Mechanics and Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The dynamic behavior of Bernoulli-Euler and Timoshenko beams subjected to a moving concentrated load is considered. Deflection expressions are found in the form of convergent series for a pretensioned beam and for a beam on an elastic foundation. We determine the parameter ranges for which the results of these two models are coincident. It is shown that, under certain conditions, a resonance is possible in such a system.
引用
收藏
页码:123 / 127
页数:4
相关论文
共 50 条
  • [1] Action of Moving Loads on the Bernoulli-Euler and Timoshenko Beams
    Zhdan, T. I.
    MOSCOW UNIVERSITY MECHANICS BULLETIN, 2019, 74 (05) : 123 - 127
  • [2] Dynamic analysis of Bernoulli-Euler beams with interval uncertainties under moving loads
    Giunta, Filippo
    Muscolino, Giuseppe
    Sofi, Alba
    Elishakoff, Isaac
    X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2017, 199 : 2591 - 2596
  • [3] Analysis of Tapered Timoshenko and Euler-Bernoulli Beams on an Elastic Foundation with Moving Loads
    Abbas, W.
    Bakr, Omar K.
    Nassar, M. M.
    Abdeen, Mostafa A. M.
    Shabrawy, M.
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [4] Benchmarking the difference of moving follower and normal loads on linear and nonlinear Euler-Bernoulli and Timoshenko beams
    Avetisyan, Ara S.
    Khurshudyan, Asatur Zh.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2021, 101 (10):
  • [5] Chaotic vibrations in flexible multi-layered Bernoulli-Euler and Timoshenko type beams
    Awrejcewicz, J.
    Krysko, A. V.
    Zhigalov, M. V.
    Saltykova, O. A.
    Krysko, V. A.
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2008, 5 (04) : 319 - 363
  • [7] Stability of the Bernoulli-Euler Beam under the Action of a Moving Thermal Source
    Morozov, N. F.
    Indeitsev, D. A.
    Lukin, A. V.
    Popov, I. A.
    Privalova, O. V.
    Shtukin, L. V.
    DOKLADY PHYSICS, 2020, 65 (02) : 67 - 71
  • [8] HIGH EIGENFREQUENCIES OF NONUNIFORM BERNOULLI-EULER BEAMS
    KATHNELSON, AN
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1992, 34 (10) : 805 - 808
  • [9] Finite element formulae for internal forces of Bernoulli-Euler beams under moving vehicles
    Lou, Ping
    Au, F. T. K.
    JOURNAL OF SOUND AND VIBRATION, 2013, 332 (06) : 1533 - 1552
  • [10] CONSERVATION-LAWS FOR NONHOMOGENEOUS BERNOULLI-EULER BEAMS
    CHIEN, N
    HONEIN, T
    HERRMANN, G
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1993, 30 (23) : 3321 - 3335