The Peregrine soliton in nonlinear fibre optics

被引:1289
作者
Kibler, B. [2 ]
Fatome, J. [2 ]
Finot, C. [2 ]
Millot, G. [2 ]
Dias, F. [3 ,4 ]
Genty, G. [5 ]
Akhmediev, N. [6 ]
Dudley, J. M. [1 ]
机构
[1] Univ Franche Comte, CNRS, Inst FEMTO ST, UMR 6174, F-25030 Besancon, France
[2] Univ Bourgogne, CNRS, Lab Interdisciplinaire Carnot Bourgogne, UMR 5209, Dijon, France
[3] ENS Cachan, CMLA, F-94230 Cachan, France
[4] Univ Coll Dublin, UCD Sch Math Sci, Dublin 4, Ireland
[5] Tampere Univ Technol, Opt Lab, FI-33101 Tampere, Finland
[6] Australian Natl Univ, Inst Adv Studies, Opt Sci Grp, Res Sch Phys & Engn, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会; 芬兰科学院;
关键词
INDUCED MODULATIONAL INSTABILITY; REPETITION-RATE; SUPERCONTINUUM GENERATION; SCHRODINGER-EQUATION; PULSE TRAINS; FREAK-WAVES; WATER;
D O I
10.1038/NPHYS1740
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Peregrine soliton is a localized nonlinear structure predicted to exist over 25 years ago, but not so far experimentally observed in any physical system(1). It is of fundamental significance because it is localized in both time and space, and because it defines the limit of a wide class of solutions to the nonlinear Schrodinger equation (NLSE). Here, we use an analytic description of NLSE breather propagation(2) to implement experiments in optical fibre generating femtosecond pulses with strong temporal and spatial localization, and near-ideal temporal Peregrine soliton characteristics. In showing that Peregrine soliton characteristics appear with initial conditions that do not correspond to the mathematical ideal, our results may impact widely on studies of hydrodynamic wave instabilities where the Peregrine soliton is considered a freak-wave prototype(3-7).
引用
收藏
页码:790 / 795
页数:6
相关论文
共 30 条
[1]  
Agrawal G. P., 2007, NONLINEAR FIBRE OPTI
[2]   Extreme waves that appear from nowhere: On the nature of rogue waves [J].
Akhmediev, N. ;
Soto-Crespo, J. M. ;
Ankiewicz, A. .
PHYSICS LETTERS A, 2009, 373 (25) :2137-2145
[3]  
Akhmediev N., 1997, Solitons: Nonlinear Pulses and Beams
[4]   MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
KORNEEV, VI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1089-1093
[5]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[6]  
BESPALOV VI, 1966, JETP LETT-USSR, V3, P307
[7]  
Dauxois T., 2006, Physics of Solitons
[8]   Generating solitons by phase engineering of a Bose-Einstein condensate [J].
Denschlag, J ;
Simsarian, JE ;
Feder, DL ;
Clark, CW ;
Collins, LA ;
Cubizolles, J ;
Deng, L ;
Hagley, EW ;
Helmerson, K ;
Reinhardt, WP ;
Rolston, SL ;
Schneider, BI ;
Phillips, WD .
SCIENCE, 2000, 287 (5450) :97-101
[9]   Full-time dynamics of modulational instability in spinor Bose-Einstein condensates [J].
Doktorov, Evgeny V. ;
Rothos, Vassilis M. ;
Kivshar, Yuri S. .
PHYSICAL REVIEW A, 2007, 76 (01)
[10]   Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation [J].
Dudley, J. M. ;
Genty, G. ;
Dias, F. ;
Kibler, B. ;
Akhmediev, N. .
OPTICS EXPRESS, 2009, 17 (24) :21497-21508