On maximal curves which are not Galois subcovers of the Hermitian curve

被引:0
作者
Iwan Duursma
Kit-Ho Mak
机构
[1] University of Illinois at Urbana-Champaign,Department of Mathematics
[2] Georgia Institute of Technology,School of Mathematics
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2012年 / 43卷
关键词
maximal curves; generalized GK curves; Galois coverings; Primary: 11G20; Secondary: 14G15, 14H25;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the generalized Giulietti-Korchmáros curve defined over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_{q^{2n} }$$\end{document}, for n ≥ 3 odd and q ≥ 3, is not a Galois subcover of the Hermitian curve over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_{q^{2n} }$$\end{document}. This answers a question raised by Garcia, Güneri and Stichtenoth.
引用
收藏
页码:453 / 465
页数:12
相关论文
共 43 条
[1]  
Abdón M.(2009)Further examples of maximal curves J. Pure Appl. Algebra 213 1192-1196
[2]  
Bezerra J.(2004)On a characterization of certain maximal curves Finite Fields Appl. 10 133-158
[3]  
Quoos L.(1999)On maximal curves in characteristic two Manuscripta Math. 99 39-53
[4]  
Abdón M.(1999)On curves covered by the Hermitian curve J. Algebra 216 56-76
[5]  
Garcia A.(2000)Curves of large genus covered by the Hermitian curve Comm. Algebra 28 4707-4728
[6]  
Abdón M.(2011)Two-point coordinate rings for GK-curves IEEE Trans. Inform. Theory 57 593-600
[7]  
Torres F.(1997)On maximal curves J. Number Theory 67 29-51
[8]  
Cossidente A.(1996)The genus of curves over finite fields with many rational points Manuscripta Math. 89 103-106
[9]  
Korchmáros G.(2010)A generalization of the Giulietti-Korchmáros maximal curve Adv. Geom. 10 427-434
[10]  
Torres F.(2006)A maximal curve which is not a Galois subcover of the Hermitian curve Bull. Braz. Math. Soc. (N.S.) 37 139-152