Universal Taylor series have a strong form of universality

被引:0
作者
Frédéric Bayart
Vassili Nestoridis
机构
[1] Université Bordeaux 1,Laboratoire Bordelais d’Analyse et de Géométrie, UMR 5467
[2] University of Athens,Department of Mathematics, Panepistimiopilis
来源
Journal d'Analyse Mathématique | 2008年 / 104卷
关键词
Natural Number; Compact Subset; Holomorphic Function; Taylor Series; Uniform Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that a function f holomorphic in a simply connected domain Ω whose Taylor series at ξ ∈ Ω is universal with respect to overconvergence automatically has a strong kind of universality: its expansion in Faber series corresponding to any connected compact set Γ ⊂ Ω with [graphic not available: see fulltext] connected is universal, and we may take a supremum over all such Γ’s in a compact set. The topology used here is the Carathéodory topology. This answers a question of Mayenberger and Müller.
引用
收藏
页码:69 / 82
页数:13
相关论文
共 13 条
[1]  
Chui C.(1971)Approximation by overconvergence of power series J. Math. Anal. Appl. 36 683-696
[2]  
Parnes M. N.(1974)Universal covering maps for variable regions Math. Z. 137 7-20
[3]  
Hejhal D. A.(1970)Approximation analytischer Funktionen durch überkonvergente Potenzreihen und deren Matrix-Transformierten Mitt. Math. Sem. Giessen 88 1-56
[4]  
Luh W.(2005)Faber series with Ostrowki gaps Complex Variables Theory Appl. 50 79-88
[5]  
Mayenberger D.(2001)Universality of Taylor series as a generic property of holomorphic functions Adv. Math. 157 138-176
[6]  
Müller J.(2006)Universal overconvergence and Ostrowski-gaps Bull. Lond. Math. Soc. 38 597-606
[7]  
Melas A.(2003)A strong notion of universal Taylor series J. London Math. Soc. (2) 68 712-724
[8]  
Nestoridis V.(1951)On universal power series Math. Sb. 28 453-460
[9]  
Müller J.(undefined)undefined undefined undefined undefined-undefined
[10]  
Vlachou V.(undefined)undefined undefined undefined undefined-undefined