Automated machine learning approach for developing a quantitative structure–activity relationship model for cardiac steroid inhibition of Na+/K+-ATPase

被引:0
作者
Yohei Takada
Kazuhiro Kaneko
机构
[1] Otsuka Holdings Co.,Corporate Planning Department
[2] Ltd,Headquarters of Clinical Development
[3] Otsuka Pharmaceutical Co.,undefined
[4] Ltd,undefined
来源
Pharmacological Reports | 2023年 / 75卷
关键词
Modeling; Machine learning; Cardiac steroids; Na; /K; -ATPase;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1017 / 1025
页数:8
相关论文
共 197 条
[1]  
Lo YC(2018)Machine learning in chemoinformatics and drug discovery Drug Discov Today 23 1538-1546
[2]  
Rensi SE(2012)Machine learning methods for property prediction in chemoinformatics: quo vadis? J Chem Inf Model 52 1413-1437
[3]  
Torng W(2017)Best Practices of computer-aided drug discovery: lessons learned from the development of a preclinical candidate for prostate cancer with a new mechanism of action J Chem Inf Model 57 1018-1028
[4]  
Altman RB(1996)Comparative QSAR: toward a deeper understanding of chemicobiological interactions Chem Rev 96 1045-1076
[5]  
Varnek A(2003)ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2 192-204
[6]  
Baskin I(2003)The matrix expression, topological index and atomic attribute of molecular topological structure J Data Sci 1 361-389
[7]  
Ban F(2016)Descriptors and their selection methods in QSAR analysis: paradigm for drug design Drug Discov Today 21 1291-1302
[8]  
Dalal K(2021)Phybrata sensors and machine learning for enhanced neurophysiological diagnosis and treatment Sensors (Basel) 21 7417-3231
[9]  
Li H(2021)A Novel automated framework for QSAR modeling of highly imbalanced leishmania high-throughput screening data J Chem Inf Model 61 3213-2421
[10]  
LeBlanc E(2017)ADMET evaluation in drug discovery. Part 17: development of quantitative and qualitative prediction models for chemical-induced respiratory toxicity Mol Pharm 14 2407-3953