A Nonlinear Generalized Thermoelasticity Model of Temperature-Dependent Materials Using Finite Element Method

被引:0
作者
Ibrahim A. Abbas
Hamdy M. Youssef
机构
[1] King Abdulaziz University,Department of Mathematics, Faculty of Science and Arts – Khulais
[2] Sohag University,Department of mathematics, Faculty of Science
[3] Alexandria University,Mathematics Department, Faculty of Education
来源
International Journal of Thermophysics | 2012年 / 33卷
关键词
Finite element method; Generalized thermoelasticity; Temperature-dependent materials;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, a general finite element method (FEM) is proposed to analyze transient phenomena in a thermoelastic model in the context of the theory of generalized thermoelasticity with one relaxation time. The exact solution of the nonlinear model of the thermal shock problem of a generalized thermoelastic half-space of temperature-dependent materials exists only for very special and simple initial- and boundary problems. In view of calculating general problems, a numerical solution technique is to be used. For this reason, the FEM is chosen. The results for the temperature increment, the stress components, and the displacement component are illustrated graphically with some comparisons.
引用
收藏
页码:1302 / 1313
页数:11
相关论文
共 42 条
[1]  
Biot M.A.(1956)undefined J. Appl. Phys. 27 340-undefined
[2]  
Cattaneo C.(1958)undefined C.R. Acad Sci. 247 431-undefined
[3]  
Maxwell J.C.(1867)undefined Philos. Trans. R. Soc. Lond. 157 49-undefined
[4]  
Joseph D.D.(1989)undefined Rev. Mod. Phys. 61 41-undefined
[5]  
Prezivsi L.(1990)undefined Rev. Mod. Phys. (addendum) 62 375-undefined
[6]  
Joseph D.D.(1985)undefined Q. Appl. Math. XLIII 295-undefined
[7]  
Prezivsi L.(1986)undefined Appl. Mech. Rev. 39 355-undefined
[8]  
Solomon A.D.(1998)undefined Appl. Mech. Rev. 51 705-undefined
[9]  
Alexiades V.(1992)undefined Int. J. Eng. Sci. 30 571-undefined
[10]  
Wilson D.G.(1967)undefined J. Mech. Phys. Solids 15 299-undefined