Well-posedness for hyperbolic equations whose coefficients lose regularity at one point

被引:0
作者
Daniele Del Santo
Martino Prizzi
机构
[1] Università di Trieste,Dipartimento di Matematica e Geoscienze
来源
Monatshefte für Mathematik | 2022年 / 197卷
关键词
Gevrey space; Well-posedness; Strictly hyperbolic; Modulus of continuity; 35L10; 35A22; 46F12;
D O I
暂无
中图分类号
学科分类号
摘要
We prove some C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty $$\end{document} and Gevrey well-posedness results for hyperbolic equations whose coefficients lose regularity at one point.
引用
收藏
页码:407 / 417
页数:10
相关论文
共 13 条
[1]  
Colombini F(1979)Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temp Ann. Sc. Norm. Sup. Pisa 6 511-559
[2]  
De Giorgi E(2002)Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients Ann. Sc. Norm. Sup. Pisa 1 327-358
[3]  
Spagnolo S(2003)On the optimal regularity of coefficients in hyperbolic Cauchy problems Bull. Sci. Math. 127 328-347
[4]  
Colombini F(1995)Hyperbolic operators with non-Lipschitz coefficients Duke Math. J. 77 657-698
[5]  
Del Santo D(2005)About the loss of derivatives for strictly hyperbolic equations with non-Lipschitz coefficients Adv. Differ. Equ. 10 191-222
[6]  
Kinoshita T(undefined)undefined undefined undefined undefined-undefined
[7]  
Colombini F(undefined)undefined undefined undefined undefined-undefined
[8]  
Del Santo D(undefined)undefined undefined undefined undefined-undefined
[9]  
Reissig M(undefined)undefined undefined undefined undefined-undefined
[10]  
Colombini F(undefined)undefined undefined undefined undefined-undefined