Asymptotic Behavior of Ground States and Local Uniqueness for Fractional Schrödinger Equations with Nearly Critical Growth

被引:0
作者
Daniele Cassani
Youjun Wang
机构
[1] Universitá degli Studi dell’Insubria,Dip. di Scienza e Alta Tecnologia
[2] RISM–Riemann International School of Mathematics,Department of Mathematics
[3] South China University of Technology,undefined
来源
Potential Analysis | 2023年 / 59卷
关键词
Nonlocal equations; Fractional Laplacian; Blow-up phenomena; Ground states; Critical growth; 35A15; 35J60; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
We study quantitative aspects and concentration phenomena for ground states of the following nonlocal Schrödinger equation (−Δ)su+V(x)u=u2s∗−1−𝜖inℝN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-{\Delta })^{s} u+V(x)u= u^{2_{s}^{*}-1-\epsilon } \ \ \text {in}\ \ \mathbb {R}^{N},$\end{document} where 𝜖 > 0, s ∈ (0,1), 2s∗:=2NN−2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{*}_{s}:=\frac {2N}{N-2s}$\end{document} and N > 4s, as we deal with finite energy solutions. We show that the ground state u𝜖 blows up and precisely with the following rate ∥u𝜖∥L∞(ℝN)∼𝜖−N−2s4s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|u_{\epsilon }\|_{L^{\infty }(\mathbb {R}^{N})}\sim \epsilon ^{-\frac {N-2s}{4s}}$\end{document}, as 𝜖→0+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\epsilon \rightarrow 0^{+}$\end{document}. We also localize the concentration points and, in the case of radial potentials V, we prove local uniqueness of sequences of ground states which exhibit a concentrating behavior.
引用
收藏
页码:1 / 39
页数:38
相关论文
共 87 条
  • [11] Peletier L(2006)Classification of solutions for an integral equation Comm. Pure. Appl. Math. 59 330-437
  • [12] Bucur C(2017)A direct method of moving planes for the fractional Laplacian Adv. Math. 308 404-6598
  • [13] Medina M(2014)Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian J. Funct. Anal. 266 6531-236
  • [14] Cabré X(2004)Best constants for Sobolev inequalities for higher order fractional derivatives J. Math. Anal. Appl. 295 225-214
  • [15] Sire Y(2019)New developments in the analysis of nonlocal operators Contemp. Math. 723 191-892
  • [16] Caffarelli L(2014)Concentrating standing waves for the fractional nonlinear schrödinger equations J. Differential Equations 256 858-3870
  • [17] Silvestre L(2013)Nondegeneracy of the bubble in the critical case for nonlocal equations Proc. Amer. Math. Soc. 141 3865-216
  • [18] Chang XJ(2013)Existence and symmetry results for a schrödinger type problem involving the fractional Laplacian Matematiche 68 201-230
  • [19] Wang ZQ(2017)Bifurcation results for a fractional elliptic equation with critical exponent in $\mathbb {R}^{N}$ℝN Manuscripta Math. 153 183-404
  • [20] Chen W(2016)Critical and subcritical fractional problems with vanishing potentials Commun. Contemp. Math. 18 20-37