Asymptotic Behavior of Ground States and Local Uniqueness for Fractional Schrödinger Equations with Nearly Critical Growth

被引:0
作者
Daniele Cassani
Youjun Wang
机构
[1] Universitá degli Studi dell’Insubria,Dip. di Scienza e Alta Tecnologia
[2] RISM–Riemann International School of Mathematics,Department of Mathematics
[3] South China University of Technology,undefined
来源
Potential Analysis | 2023年 / 59卷
关键词
Nonlocal equations; Fractional Laplacian; Blow-up phenomena; Ground states; Critical growth; 35A15; 35J60; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
We study quantitative aspects and concentration phenomena for ground states of the following nonlocal Schrödinger equation (−Δ)su+V(x)u=u2s∗−1−𝜖inℝN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(-{\Delta })^{s} u+V(x)u= u^{2_{s}^{*}-1-\epsilon } \ \ \text {in}\ \ \mathbb {R}^{N},$\end{document} where 𝜖 > 0, s ∈ (0,1), 2s∗:=2NN−2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{*}_{s}:=\frac {2N}{N-2s}$\end{document} and N > 4s, as we deal with finite energy solutions. We show that the ground state u𝜖 blows up and precisely with the following rate ∥u𝜖∥L∞(ℝN)∼𝜖−N−2s4s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|u_{\epsilon }\|_{L^{\infty }(\mathbb {R}^{N})}\sim \epsilon ^{-\frac {N-2s}{4s}}$\end{document}, as 𝜖→0+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\epsilon \rightarrow 0^{+}$\end{document}. We also localize the concentration points and, in the case of radial potentials V, we prove local uniqueness of sequences of ground states which exhibit a concentrating behavior.
引用
收藏
页码:1 / 39
页数:38
相关论文
共 87 条
  • [1] Alves CO(2016)Existence and concentration of solution for a class of fractional elliptic equation in $\mathbb {R}^{N}$ℝN via penalization method, Calc Var. Partial Differential Equations 55 19-756
  • [2] Miyagaki OH(2016)Ground states for superlinear fractional Schrödinger equations in $\mathbb {R}^{N}$ℝN Ann. Acad. Sci. Fen. Math. 41 745-365
  • [3] Ambrosio V(1987)Elliptic equations with nearly critical growth J. Differential Equations 70 349-1766
  • [4] Atkinson F(2017)Semilinear nonlocal elliptic equations with critical and supercritical exponents Commun. Pure Appl. Anal. 16 1741-7037
  • [5] Peletier L(2019)Nonlocal scalar field equations: Qualitative properties, asymptotic profiles and local uniqueness of solutions J. Differential Equations 266 6985-192
  • [6] Bhakta M(1989)Asymptotics for elliptic equations involving critical growth, Progr Nonlinear Differential Equations Appl. 1 149-400
  • [7] Mukherjee D(2019)A fractional elliptic problem in $\mathbb {R}^{N}$ℝN with critical growth and convex nonlinearities Manuscripta Math. 158 371-53
  • [8] Bhakta M(2014)Nonlinear equations for fractional Laplacians, i: regularity, maximum principles, and Hamiltonian estimates Ann. Inst. Henri Poincare Anal. Nonliné,airé 31 23-1260
  • [9] Mukherjee D(2007)An extension problem related to the fractional Laplacian Comm. Partial Differential Equations 32 1245-494
  • [10] Brezis H(2013)Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity Nonlinearity 26 479-343