Trigonometric Approximations and Kolmogorov Widths of Anisotropic Besov Classes of Periodic Functions of Several Variables

被引:0
作者
V. V. Myronyuk
机构
[1] Ukrainian National Academy of Sciences,Institute of Mathematics
来源
Ukrainian Mathematical Journal | 2015年 / 66卷
关键词
Periodic Function; Besov Space; Trigonometric Polynomial; Ukrainian National Academy; Bernstein Inequality;
D O I
暂无
中图分类号
学科分类号
摘要
We describe the Besov anisotropic spaces of periodic functions of several variables in terms of the decomposition representation and establish the exact-order estimates of the Kolmogorov widths and trigonometric approximations of functions from unit balls of these spaces in the spaces Lq.
引用
收藏
页码:1248 / 1266
页数:18
相关论文
共 9 条
[1]  
Besov OV(1961)Investigation of one family of functional spaces in connection with the embedding and continuation theorems Tr. Mat. Inst. Akad. Nauk SSSR 60 42-81
[2]  
Nikol’skii SM(1951)Inequalities for entire functions of finite powers and their application to the theory of differentiable functions of many variables Tr. Mat. Inst. Akad. Nauk SSSR 38 244-278
[3]  
Amanov TI(1965)Representation and embedding theorems for the functional spaces Tr. Mat. Inst. Akad. Nauk SSSR 77 5-34
[4]  
Lizorkin PI(1968)B(Rn) and Sib. Mat. Zh. 9 1127-1152
[5]  
Temlyakov VN(1986) * B (0 ≤ xj ≤ 2π, j = 1, …, n) Tr. Mat. Inst. Akad. Nauk SSSR 178 1-112
[6]  
Romanyuk AS(2010)Generalized Hölder spaces Mat. Zametki 87 429-442
[7]  
Myronyuk VV(2013) and their connection with the Sobolev spaces Ukr. Math. J. 64 1370-1381
[8]  
Kolmogoroff A(1936)Approximation of functions with bounded mixed derivative Ann. Math. 37 107-110
[9]  
Romanyuk AS(2006)Approximation of the classes Mat. Sb. 197 71-96