Nonlinear Maps Preserving the Jordan Triple 1-∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-Product on Von Neumann Algebras

被引:2
作者
Changjing Li
Fangyan Lu
机构
[1] Shandong Normal University,School of Mathematical Sciences
[2] Soochow University,Department of Mathematics
关键词
Jordan triple ; -product; Isomorphism; Von Neumann algebras; 47B48; 46L10;
D O I
10.1007/s11785-016-0575-y
中图分类号
学科分类号
摘要
In this paper, we investigate a bijective map Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} between two von Neumann algebras, one of which has no central abelian projections, satisfying Φ(A∙B∙C)=Φ(A)∙Φ(B)∙Φ(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi (A\bullet B\bullet C)=\Phi (A)\bullet \Phi (B)\bullet \Phi (C)$$\end{document} for all A, B, C in the domain, where A∙B=AB+BA∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\bullet B=AB+BA^{*}$$\end{document} is the Jordan 1-∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-product of A and B. It is showed that the map Φ(I)Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi (I)\Phi $$\end{document} is a sum of a linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism and a conjugate linear ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-isomorphism, where Φ(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi (I)$$\end{document} is a self-adjoint central element in the range with Φ(I)2=I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi (I)^{2}=I$$\end{document}.
引用
收藏
页码:109 / 117
页数:8
相关论文
共 17 条
  • [1] Brešar M(2000)On ring with involution equipped with some new product Publ. Math. Debrecen 57 121-134
  • [2] Fošner A(2014)Nonlinear maps preserving Jordan J. Math. Anal. Appl. 409 180-188
  • [3] Dai L(2002)-products Southeast Asian Bull. Math. 26 27-31
  • [4] Lu F(2015)Prime rings with involution equipped with some new product J. Math. Anal. Appl. 430 830-844
  • [5] Fošner M(1957)Nonlinear maps preserving Jordan triple Proc. Am. Math. Soc. 8 535-536
  • [6] Huo D(2013)- Linear Algebra Appl. 438 2339-2345
  • [7] Zheng B(1971)-products Pac. J. Math. 38 717-735
  • [8] Liu H(1996)On operator commutators Linear Algebra Appl. 235 229-234
  • [9] Kleinecke DC(1991)Mappings preserving new product Studia Math. 97 157-165
  • [10] Li C(1993) on factor von Neumann algebras Proc. Am. Math. Soc 119 1105-1113