Isogeometric shape optimization of trimmed shell structures

被引:1
作者
Pilseong Kang
Sung-Kie Youn
机构
[1] KAIST,Department of Mechanical Engineering
来源
Structural and Multidisciplinary Optimization | 2016年 / 53卷
关键词
Isogeometric shape optimization; Reissner-Mindlin shell; Trimmed NURBS surfaces; Exact direction vectors; Trimmed shell structures;
D O I
暂无
中图分类号
学科分类号
摘要
In most of structural analyses and optimizations using the conventional isogeometric analysis, handling of trimmed or topologically complex geometries is difficult and awkward. A trimmed or topologically complex geometry is normally modeled with multiple untrimmed patches due to the tensor-product form of a Non-Uniform Rational B-Spline (NURBS) surface, and then the patches are put together for analysis. In the present work, the isogeometric shape optimization of trimmed shell structures using the information of trimmed NURBS surfaces is proposed. To treat the trimmed shell structures efficiently, two-dimensional Trimmed Surface Analysis (TSA) which is the isogeometric approach for treating a topologically complex geometry with a single patch is extended and adopted to the analysis and optimization of shell structures. Not only the coordinates of shell surface control points, but also the coordinates of trimming curve control points are chosen as design variables so that the curvatures of shell surface as well as the trimmed boundaries can be varied during the optimization. The degenerated shell based on Reissner-Mindlin theory is formulated with exact direction vectors and their analytic derivatives. Method of Moving Asymptotes (MMA) is used as the optimization algorithm, and the shape sensitivities with respect to the coordinates of surface control points and trimming curve control points are formulated with exact direction vectors and their analytic derivatives. The developed sensitivity formulations are validated by comparing with the results of Finite Difference Method (FDM), and they show excellent agreements. Numerical examples are treated to confirm the ability of the proposed approach.
引用
收藏
页码:825 / 845
页数:20
相关论文
共 113 条
[1]  
Ansola R(2002)An integrated approach for shape and topology optimization of shell structures Comput Struct 80 449-458
[2]  
Canales J(2004)Combined shape and reinforcement layout optimization of shell structures Struct Multidiscip Optim 27 219-227
[3]  
Tarrago JA(2010)Isogeometric shell analysis: the Reissner–Mindlin shell Comput Methods Appl Mech Eng 199 276-289
[4]  
Rasmussen J(2011)A large deformation, rotation-free, isogeometric shell Comput Methods Appl Mech Eng 200 1367-1378
[5]  
Ansola R(2013)Blended isogeometric shells Comput Methods Appl Mech Eng 255 133-146
[6]  
Canales J(2001)Structural optimization and form finding of light weight structures Comput Struct 79 2053-2062
[7]  
Tarrago JA(2005)Computational methods for form finding and optimization of shells and membranes Comput Methods Form Find Optim 194 3438-3452
[8]  
Rasmussen J(1982)Shape optimization of plate and shell structures AIAA J 20 268-273
[9]  
Benson DJ(2013)Efficient isogeometric NURBS-based solid-shell elements: mixed formulation and B-method Comput Methods Appl Mech Eng 267 86-110
[10]  
Bazilevs Y(2013)On the development of NURBS-based isogeometric solid shell elements: 2D problems and preliminary extension to 3D Comput Mech 52 1085-1112