Infinite Measures on von Neumann Algebras

被引:0
作者
Stanisław Goldstein
Adam Paszkiewicz
机构
[1] Łódź University,Faculty of Mathematics and Computer Science
来源
International Journal of Theoretical Physics | 2015年 / 54卷
关键词
Infinite measure; Weight; Semifinite; Densely semifinite; Strictly semifinite; von Neumann algebra;
D O I
暂无
中图分类号
学科分类号
摘要
Infinite measures on von Neumann algebras are classified according to properties analogous to those from classical measure theory. These properties are carefully examined in case of semifinite von Neumann algebras. Some examples are also given and the direction for further research indicated.
引用
收藏
页码:4341 / 4348
页数:7
相关论文
共 8 条
[1]  
Combes F(1968)Poids sur une ∗-algèbre J. Math. Pures Appl. 47 57-100
[2]  
Combes F(1971)Poids associés à une algèbre hilbertienne à gauche Compositio Math. 23 49-77
[3]  
Combes F(1971)Poids et espérances conditionelles dans les algèbre de von Neumann Bull. Soc. Math. France 99 73-112
[4]  
Goldstein S(1988)Comparison of states and Darboux-type properties in von Neumann algebras Math. Scand. 63 220-232
[5]  
Paszkiewicz A(1977)An example of a weight with type III centralizer Proc. Amer. Math. Soc. 62 278-280
[6]  
Haagerup U(1970)States and automorphism groups of operator algebras Comm. Math. Phys. 19 142-160
[7]  
Herman RH(undefined)undefined undefined undefined undefined-undefined
[8]  
Takesaki M(undefined)undefined undefined undefined undefined-undefined