Modulation Spaces of Symbols for Representations of Nilpotent Lie Groups

被引:0
作者
Ingrid Beltiţă
Daniel Beltiţă
机构
[1] Institute of Mathematics “Simion Stoilow” of the Romanian Academy,
来源
Journal of Fourier Analysis and Applications | 2011年 / 17卷
关键词
Pseudo-differential Weyl calculus; Modulation space; Nilpotent Lie group; Semidirect product; 47G30; 22E25; 22E27; 35S05;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate continuity properties of operators obtained as values of the Weyl correspondence constructed by Pedersen (Invent. Math. 118:1–36, 1994) for arbitrary irreducible representations of nilpotent Lie groups. To this end we introduce modulation spaces for such representations and establish some of their basic properties. The situation of square-integrable representations is particularly important and in the special case of the Schrödinger representation of the Heisenberg group we recover the classical modulation spaces used in the time-frequency analysis.
引用
收藏
页码:290 / 319
页数:29
相关论文
共 35 条
[1]  
Beltiţă I.(2009)Magnetic pseudo-differential Weyl calculus on nilpotent Lie groups Ann. Glob. Anal. Geom. 36 293-322
[2]  
Beltiţă D.(2010)Uncertainty principles for magnetic structures on certain coadjoint orbits J. Geom. Phys. 60 81-95
[3]  
Beltiţă I.(1961)The space Duke Math. J. 28 301-324
[4]  
Beltiţă D.(1972), with mixed norm Proc. Natl. Acad. Sci. USA 69 1185-1187
[5]  
Benedek A.(1996)A class of bounded pseudo-differential operators Rocky Mt. J. Math. 26 523-544
[6]  
Panzone R.(1989) matrix coefficients for nilpotent Lie groups J. Funct. Anal. 86 307-340
[7]  
Calderón A.-P.(1989)Banach spaces related to integrable group representations and their atomic decompositions. I Monatshefte Math. 108 129-148
[8]  
Vaillancourt R.(1996)Banach spaces related to integrable group representations and their atomic decompositions. II Studia Math. 121 87-104
[9]  
Corwin L.(1999)An uncertainty principle related to the Poisson summation formula Integral Equ. Oper. Theory 34 439-457
[10]  
Moore C.C.(2001)Modulation spaces and pseudodifferential operators J. Lond. Math. Soc. 2 63 205-214