On the Superlinear Convergence Order of the Logarithmic Barrier Algorithm

被引:0
作者
Jean-Pierre Dussault
Abdellatif Elafia
机构
[1] Université de Sherbrooke,Professeur titulaire, département de Mathématiques et Informatique
[2] Université de Sherbrooke,Département de Mathématiques et Informatique
来源
Computational Optimization and Applications | 2001年 / 19卷
关键词
logarithmic barrier; penalty algorithms; interior point methods;
D O I
暂无
中图分类号
学科分类号
摘要
Since the pioneering work of Karmarkar, much interest was directed to penalty algorithms, in particular to the log barrier algorithm. We analyze in this paper the asymptotic convergence rate of a barrier algorithm when applied to non-linear programs. More specifically, we consider a variant of the SUMT method, in which so called extrapolation predictor steps allowing reducing the penalty parameter rk +1}<rk are followed by some Newton correction steps. While obviously related to predictor-corrector interior point methods, the spirit differs since our point of view is biased toward nonlinear barrier algorithms; we contrast in details both points of view. In our context, we identify an asymptotically optimal strategy for reducing the penalty parameter r and show that if rk+1=rkα with α < 8/5, then asymptotically only 2 Newton corrections are required, and this strategy achieves the best overall average superlinear convergence order (∼1.1696). Therefore, our main result is to characterize the best possible convergence order for SUMT type methods.
引用
收藏
页码:31 / 53
页数:22
相关论文
共 14 条
[1]  
Benchakroun A.(1993)Pénalités mixtes: un algorithme superlinéairement convergent en deux étapes R.A.I.R.O. recherche opérationnelle 27 353-374
[2]  
Dussault J.-P.(1983)Truncated-newton algorithms for large-scale unconstrained optimization Mathematical Programming 26 190-230
[3]  
Mansouri A.(1995)Numerical stability and efficiency of penalty algorithms S.I.A.M. Journal on Numerical Analysis 32 296-317
[4]  
Dembo R.S.(1986)On projected newton barrier methods for linear programming and an equivalence to karmarkar's projective method Mathematical Programming 36 183-209
[5]  
Steihaug T.(1986)On the accurate determination of search directions for simple differentiable penalty functions I.M.A. Journal on Numerical Analysis 6 357-372
[6]  
Dussault J.-P.(1989)On the convergence of a sequential penalty function method for constrained minimization S.I.A.M. Journal on Numerical Analysis 26 107-108
[7]  
Gill P.E.(1984)A new polynomial time algorithm for linear programming Combinatorica 4 373-395
[8]  
Murray W.(undefined)undefined undefined undefined undefined-undefined
[9]  
Saunders M.S.(undefined)undefined undefined undefined undefined-undefined
[10]  
Tomlin J.A.(undefined)undefined undefined undefined undefined-undefined