Computing the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document} Geodesic Diameter and Center of a Polygonal Domain

被引:0
作者
Sang Won Bae
Matias Korman
Joseph S. B. Mitchell
Yoshio Okamoto
Valentin Polishchuk
Haitao Wang
机构
[1] Kyonggi University,
[2] Tohoku University,undefined
[3] Stony Brook University,undefined
[4] The University of Electro-Communications,undefined
[5] Linköping University,undefined
[6] Utah State University,undefined
关键词
Geodesic diameter; Geodesic center; Shortest paths; Polygonal domains; metric; 68W05; 68W40;
D O I
10.1007/s00454-016-9841-z
中图分类号
学科分类号
摘要
For a polygonal domain with h holes and a total of n vertices, we present algorithms that compute the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document} geodesic diameter in O(n2+h4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2+h^4)$$\end{document} time and the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document} geodesic center in O((n4+n2h4)α(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O((n^4+n^2 h^4)\alpha (n))$$\end{document} time, respectively, where α(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (\cdot )$$\end{document} denotes the inverse Ackermann function. No algorithms were known for these problems before. For the Euclidean counterpart, the best algorithms compute the geodesic diameter in O(n7.73)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{7.73})$$\end{document} or O(n7(h+logn))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^7(h+\log n))$$\end{document} time, and compute the geodesic center in O(n11logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{11}\log n)$$\end{document} time. Therefore, our algorithms are significantly faster than the algorithms for the Euclidean problems. Our algorithms are based on several interesting observations on L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document} shortest paths in polygonal domains.
引用
收藏
页码:674 / 701
页数:27
相关论文
共 34 条
[11]  
Edelsbrunner H(1992)An efficient algorithm for Euclidean shortest paths among polygonal obstacles in the plane Algorithmica 8 55-88
[12]  
Guibas LJ(1998) shortest paths among polygonal obstacles in the plane Algorithmica 20 319-352
[13]  
Sharir M(1989)A new approach for the geodesic Voronoi diagram of points in a simple polygon and other restricted polygonal domains Discrete Comput. Geom. 4 611-626
[14]  
Guibas LJ(1989)Computing the geodesic center of a simple polygon J. Comput. Syst. Sci. 39 220-235
[15]  
Hershberger J(undefined)Computing geodesic furthest neighbors in simple polygons undefined undefined undefined-undefined
[16]  
Leven D(undefined)undefined undefined undefined undefined-undefined
[17]  
Sharir M(undefined)undefined undefined undefined undefined-undefined
[18]  
Tarjan RE(undefined)undefined undefined undefined undefined-undefined
[19]  
Hershberger J(undefined)undefined undefined undefined undefined-undefined
[20]  
Snoeyink J(undefined)undefined undefined undefined undefined-undefined