Computing the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document} Geodesic Diameter and Center of a Polygonal Domain

被引:0
作者
Sang Won Bae
Matias Korman
Joseph S. B. Mitchell
Yoshio Okamoto
Valentin Polishchuk
Haitao Wang
机构
[1] Kyonggi University,
[2] Tohoku University,undefined
[3] Stony Brook University,undefined
[4] The University of Electro-Communications,undefined
[5] Linköping University,undefined
[6] Utah State University,undefined
关键词
Geodesic diameter; Geodesic center; Shortest paths; Polygonal domains; metric; 68W05; 68W40;
D O I
10.1007/s00454-016-9841-z
中图分类号
学科分类号
摘要
For a polygonal domain with h holes and a total of n vertices, we present algorithms that compute the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document} geodesic diameter in O(n2+h4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2+h^4)$$\end{document} time and the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document} geodesic center in O((n4+n2h4)α(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O((n^4+n^2 h^4)\alpha (n))$$\end{document} time, respectively, where α(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (\cdot )$$\end{document} denotes the inverse Ackermann function. No algorithms were known for these problems before. For the Euclidean counterpart, the best algorithms compute the geodesic diameter in O(n7.73)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{7.73})$$\end{document} or O(n7(h+logn))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^7(h+\log n))$$\end{document} time, and compute the geodesic center in O(n11logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{11}\log n)$$\end{document} time. Therefore, our algorithms are significantly faster than the algorithms for the Euclidean problems. Our algorithms are based on several interesting observations on L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document} shortest paths in polygonal domains.
引用
收藏
页码:674 / 701
页数:27
相关论文
共 34 条
[1]  
Aronov B(1989)On the geodesic Voronoi diagram of point sites in a simple polygon Algorithmica 4 109-140
[2]  
Bae SW(2013)The geodesic diameter of polygonal domains Discrete Comput. Geom. 50 306-329
[3]  
Korman M(2015)Computing the Comput. Geom. 48 495-505
[4]  
Okamoto Y(1994) geodesic diameter and center of a simple polygon in linear time Int. J. Comput. Geom. Appl. 4 475-481
[5]  
Bae SW(1989)Triangulating disjoint Jordan chains Discrete Comput. Geom. 4 311-336
[6]  
Korman M(1987)The upper envelope of piecewise linear functions: algorithms and applications Algorithmica 2 209-233
[7]  
Okamoto Y(1994)Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons Comput. Geom. 4 63-97
[8]  
Wang H(1997)Computing minimum length paths of a given homotopy class SIAM J. Comput. 26 1612-1634
[9]  
Bar-Yehuda R(2009)Matrix searching with the shortest-path metric Comput. Geom. 42 873-884
[10]  
Chazelle B(1997)Planar rectilinear shortest path computation using corridors Discrete Comput. Geom. 18 377-383