p-Adic Pseudodifferential Operators and p-Adic Wavelets

被引:0
作者
S. V. Kozyrev
机构
[1] RAS,Institute of Chemical Physics
来源
Theoretical and Mathematical Physics | 2004年 / 138卷
关键词
-adic diffusion;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new wide class of p-adic pseudodifferential operators. We show that the basis of p-adic wavelets is the basis of eigenvectors for the introduced operators.
引用
收藏
页码:322 / 332
页数:10
相关论文
共 46 条
[1]  
Kozyrev S. V.(2002)undefined Izv. Math. 66 367-undefined
[2]  
Kochubei A. N.(1993)undefined Theor. Math. Phys. 96 854-undefined
[3]  
Kochubei A. N.(1992)undefined Math. USSR Izv. 39 1263-undefined
[4]  
Avetisov V. A.(1999)undefined J. Phys. A 32 8785-undefined
[5]  
Bikulov A. H.(2002)undefined J. Phys. A 35 177-undefined
[6]  
Kozyrev S. V.(1987)undefined Class. Q. Grav. 4 83-undefined
[7]  
Avetisov V. A.(1997)undefined Modern Phys. Lett. A 12 1455-undefined
[8]  
Bikulov A. H.(2000)undefined Eur. J. Phys. B 14 535-undefined
[9]  
Kozyrev S. V.(1997)undefined J. Phys. I France 7 105-undefined
[10]  
Osipov V. A.(1995)undefined Nature Struct. Biol. 2 821-undefined