Nonexistence results for pseudo-parabolic equations in the Heisenberg group

被引:0
作者
Mohamed Jleli
Mokhtar Kirane
Bessem Samet
机构
[1] King Saud University,Department of Mathematics, College of Science
[2] Université de La Rochelle,Laboratoire de Mathématiques, Image et Applications Pôle Sciences et Technologies
[3] King Abdulaziz University,NAAM Research Group, Department of Mathematics, Faculty of Science
来源
Monatshefte für Mathematik | 2016年 / 180卷
关键词
Nonexistence; Nonlinear pseudo-parabolic equation; System; Heisenberg group; 47J35; 34A34; 35R03;
D O I
暂无
中图分类号
学科分类号
摘要
We derive sufficient conditions for the nonexistence of global weak solutions to the nonlinear pseudo-parabolic equation ut-ΔHut-ΔHu=|u|p+f(t,ϑ),(t,ϑ)∈(0,∞)×H,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_t-\Delta _{\mathbb H}u_t-\Delta _{\mathbb H}u=|u|^p+f(t,\vartheta ), \quad (t,\vartheta )\in (0,\infty )\times \mathbb {H}, \end{aligned}$$\end{document}where ΔH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _\mathbb {H}$$\end{document} is the Kohn–Laplace operator on the (2N+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2N+1)$$\end{document}-dimensional Heisenberg group H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}$$\end{document}, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document} and f(t,ϑ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(t,\vartheta )$$\end{document} is a given function. Next, we extend this result to the case of systems. Our technique of proof is based on the test function method.
引用
收藏
页码:255 / 270
页数:15
相关论文
共 39 条
  • [1] Azman I(2015)Blow-up of solutions to parabolic inequalities in the Heisenberg group Electron. J. Differ. Equ. 167 1-9
  • [2] Jleli M(1960)Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks J. Appl. Math. Mech. 24 1286-1303
  • [3] Samet B(1972)Model equations for long waves in nonlinear dispersive systems Philos. Trans. R. Soc. Lond. Ser. A 272 47-78
  • [4] Barenblatt GI(1997)Liouville theorems for semilinear equations on the Heisenberg group Ann. Inst. Henri Poincaré 14 295-308
  • [5] Zheltov IuP(2009)Cauchy problems of semilinear pseudo-parabolic equations J. Differ. Equ. 246 4568-4590
  • [6] Kochina IN(2001)Critical degenerate inequalities on the Heisenberg group Manuscr. Math. 106 519-536
  • [7] Benjamin TB(2004)Nonexistence results of solutions to systems of semilinear differential inequalities on the Heisenberg group Abstr. Appl. Anal. 2004 155-164
  • [8] Bona JL(1974)Estimate for the Commun. Pure Appl. Math. 27 492-522
  • [9] Mahony JJ(2015) complex and analysis on the Heisenberg group Fract. Calc. Appl. Anal. 18 717-734
  • [10] Birindelli I(2005)Nonexistence results for a class of evolution equations in the Heisenberg group Izv. Math. 69 59-111