Strong Morita Equivalence for Completely Positive Linear Maps on C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-Algebras

被引:0
作者
Kazunori Kodaka
机构
[1] Ryukyu University,Department of Mathematical Sciences, Faculty of Science
关键词
Completely positive linear maps; Inclusions of ; -algebras; Conditional expectations; Strong Morita equivalence; 46L05; 46L07;
D O I
10.1007/s41980-022-00724-w
中图分类号
学科分类号
摘要
We will introduce the notion of strong Morita equivalence for completely positive linear maps and study its basic properties. Also, we will discuss the relation between strong Morita equivalence for bounded C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-bimodule linear maps and strong Morita equivalence for completely positive linear maps. Furthermore, we will show that if two unital C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras are strongly Morita equivalent, then there is a 1-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-1$$\end{document} correspondence between the two sets of all strong Morita equivalence classes of completely positive linear maps on the two unital C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras and we will show that the corresponding two classes of the completely positive linear maps are also strongly Morita equivalent.
引用
收藏
页码:3743 / 3765
页数:22
相关论文
共 9 条
[1]  
Brown LG(1994)Quasi-multipliers and embeddings of Hilbert Can. J. Math. 46 1150-1174
[2]  
Mingo J(1995)-bimodules Math. Scand. 76 289-309
[3]  
Shen N-T(2022)Multipliers of imprimitivity bimodules and Morita equivalence of crossed products Proc. Edinb. Math. Soc. 65 182-213
[4]  
Echterhoff S(2018)Strong Morita equivalence for conditional expectations J. Aust. Math. Soc. 105 103-144
[5]  
Raeburn I(1955)The strong Morita equivalence for inclusions of Proc. Am. Math. Soc. 6 211-216
[6]  
Kodaka K(undefined)-algebras and conditional expectations for equivalence bimodules undefined undefined undefined-undefined
[7]  
Kodaka K(undefined)Positive functions on undefined undefined undefined-undefined
[8]  
Teruya T(undefined)-algebras undefined undefined undefined-undefined
[9]  
Stinespring WF(undefined)undefined undefined undefined undefined-undefined