A Complexity Analysis of a Smoothing Method Using CHKS-functions for Monotone Linear Complementarity Problems

被引:0
作者
Keisuke Hotta
Masatora Inaba
Akiko Yoshise
机构
[1] University of Tsukuba,Institute of Policy and Planning Sciences
来源
Computational Optimization and Applications | 2000年 / 17卷
关键词
smoothing method; complexity bound; linear complementarity problem; monotonicity;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the standard linear complementarity problem (LCP): Find (x, y) ∈ R2n such that y = Mx + q, (x, y) ≥ 0 and xiyi = 0 (i = 1, 2, ... , n), where M is an n × n matrix and q is an n-dimensional vector. Recently several smoothing methods have been developed for solving monotone and/or P0 LCPs. The aim of this paper is to derive a complexity bound of smoothing methods using Chen-Harker-Kanzow-Smale functions in the case where the monotone LCP has a feasible interior point. After a smoothing method is provided, some properties of the CHKS-function are described. As a consequence, we show that the algorithm terminates in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$O\left( {\frac{{\gamma ^{ - 6} n}}{{\varepsilon ^6 }}\log \frac{{\gamma ^{ - 2} n}}{{\varepsilon ^2 }}} \right)$$ \end{document} Newton iterations where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\bar \gamma }$$ \end{document} is a number which depends on the problem and the initial point. We also discuss some relationships between the interior point methods and the smoothing methods.
引用
收藏
页码:183 / 201
页数:18
相关论文
共 14 条
  • [1] Burke J.V.(1998)The global linear convergence of a non-interior path-following algorithm for linear complementarity problems Mathematics of Operations Research 23 719-734
  • [2] Xu S.(1993)A non-interior-point continuation method for linear complementarity problems SIAM Journal on Matrix Analysis and Applications 14 1168-1190
  • [3] Chen B.(1999)Existence and limiting behavior of trajectories associated with Computational Optimization and Applications 12 229-251
  • [4] Harker P.T.(1999)-equations Mathematical Programming 86 105-133
  • [5] Gowda M.S.(1996)Global convergence of a class of non-interior point algorithms using Chen-Harkar-Kanzow-Smale functions for nonlinear complementarity problems SIAM J. Optimization 6 326-341
  • [6] Tawhid M.A.(1999)Global convergence properties of some iterative methods for linear complementarity problems Linear Algebra and its Applications 290 237-246
  • [7] Hotta K.(1999)On characterizations of Computational Optimization and Applications 13 201-220
  • [8] Yoshise A.(undefined)-and undefined undefined undefined-undefined
  • [9] Kanzow C.(undefined)-properties in nonsmooth functions undefined undefined undefined-undefined
  • [10] Song Y.(undefined)On NCP-functions undefined undefined undefined-undefined