Particles motion on topological Lifshitz black holes in 3+1 dimensions

被引:0
作者
Marco Olivares
Germán Rojas
Yerko Vásquez
J. R. Villanueva
机构
[1] Pontificia Universidad Católica de Valparaíso,Instituto de Física
[2] North American College,Departamento de Ciencias Físicas, Facultad de Ingeniería, Ciencias y Administración
[3] Universidad de La Frontera,Departamento de Física y Astronomía
[4] Universidad de Valparaíso,undefined
[5] Centro de Astrofísica de Valparaíso,undefined
来源
Astrophysics and Space Science | 2013年 / 347卷
关键词
Lifshitz black holes; Geodesics; Causal structure;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper we study the causal structure of a topological black hole presented by Mann R.B. (in J. High Energy Phys. 06:075, 2009) by mean the standard Lagrangian procedure, which allow us analyze qualitatively the behavior of test particles using the effective potential. Then, the geodesic motion of massive and massless particles is obtained analytically. We find that confined orbits are forbidden on this spacetime, however radial photons can escape to infinity in an infinite proper time but in a finite coordinate time, this correspond to an interesting and novel result.
引用
收藏
页码:83 / 89
页数:6
相关论文
共 51 条
  • [1] Balasubramanian K.(2009)An analytic Lifshitz black hole Phys. Rev. D 80 1167-1190
  • [2] McGreevy J.(2005)The geodesic structure of the Schwarzschild anti-de Sitter black hole Class. Quantum Gravity 22 2255-4769
  • [3] Cruz N.(2010)Lovelock-Lifshitz black holes J. High Energy Phys. 1007 941-4835
  • [4] Olivares M.(2012)The application of Weierstrass elliptic functions to Schwarzschild null geodesics Class. Quantum Gravity 29 4743-446
  • [5] Villanueva J.R.(2012)Quasinormal modes, stability analysis and absorption cross section for 4-dimensional topological Lifshitz black hole Eur. Phys. J. C 72 4817-undefined
  • [6] Dehghani M.H.(2008)Complete analytic solution of the geodesic equation in Schwarzschild–(anti-)de Sitter spacetimes Phys. Rev. Lett. 100 231-undefined
  • [7] Mann R.B.(2008)Geodesic equation in Schwarzschild-(anti-)de Sitter space-times: analytical solutions and applications Phys. Rev. D 78 2927-undefined
  • [8] Gibbons G.W.(2008)Analytical solutions of the geodesic equation in higher dimensions Phys. Rev. D 78 2923-undefined
  • [9] Vyska M.(2010)Towards strange metallic holography J. High Energy Phys. 1004 1703-undefined
  • [10] Gonzalez P.A.(2012)Lifshitz singularities Phys. Rev. D 85 507-undefined