Diffusion-controlled crack propagation in alkali feldspar

被引:0
|
作者
E. Petrishcheva
M. Rieder
J. Predan
F. D. Fischer
G. Giester
R. Abart
机构
[1] University of Vienna,Department of Lithospheric Research
[2] University of Maribor,Faculty of Mechanical Engineering
[3] Montanuniversität Leoben,Institute of Mechanics
[4] University of Vienna,Institute of Mineralogy and Crystallography
来源
Physics and Chemistry of Minerals | 2019年 / 46卷
关键词
Alkali Feldspar; Sodium-rich Compositions; Critical Energy Release Rate; Tensile Stress Component; Sanidine;
D O I
暂无
中图分类号
学科分类号
摘要
The chemically driven propagation of interacting parallel cracks in monoclinic alkali feldspar was studied experimentally. Single crystals of potassium-rich gem-quality sanidine were shifted towards more sodium-rich compositions by cation exchange with a NaCl–KCl salt melt at a temperature of 850∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$850\,^{\circ }\hbox {C}$$\end{document} and close to ambient pressure. Initially, a zone with elevated sodium content formed at the crystal surfaces due to the simultaneous in-diffusion of sodium and out-diffusion of potassium, where the rate of cation exchange was controlled by sodium–potassium interdiffusion within the feldspar. A chemical shift of potassium-rich alkali feldspar towards more sodium-rich compositions produces highly anisotropic contraction of the crystal lattice. This induced a tensile stress state in the sodium-rich surface layer of the crystals, which triggered the formation of a system of nearly equi-spaced parallel cracks oriented approximately perpendicular to the direction of maximum shortening. Crack propagation following their nucleation was driven by cation exchange occurring along the crack flanks and was controlled by the intimate coupling of the diffusion-mediated build-up of a tensile stress state around the crack tips and stress release by successive crack propagation. The critical energy release rate of fracturing was determined as 1.8–2.2 Jm-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$~ \hbox {J}\,\hbox {m}^{-2}$$\end{document} from evaluation of the near-tip J-integral. The mechanism of diffusion-controlled crack propagation is discussed in the context of high-temperature feldspar alteration.
引用
收藏
页码:15 / 26
页数:11
相关论文
共 50 条
  • [1] Diffusion-controlled crack propagation in alkali feldspar
    Petrishcheva, E.
    Rieder, M.
    Predan, J.
    Fischer, F. D.
    Giester, G.
    Abart, R.
    PHYSICS AND CHEMISTRY OF MINERALS, 2019, 46 (01) : 15 - 26
  • [2] Diffusion-controlled and replacement microtextures in alkali feldspars from two pegmatites: Perth, Ontario and Keystone, South Dakota
    Lee, Martin R.
    Parsons, Ian
    MINERALOGICAL MAGAZINE, 2015, 79 (07) : 1711 - 1735
  • [3] Chemically induced fracturing in alkali feldspar
    Scheidl, K. S.
    Schaeffer, A. -K.
    Petrishcheva, E.
    Habler, G.
    Fischer, F. D.
    Schreuer, J.
    Abart, R.
    PHYSICS AND CHEMISTRY OF MINERALS, 2014, 41 (01) : 1 - 16
  • [4] Potassium self-diffusion in a K-rich single-crystal alkali feldspar
    Fabian Hergemöller
    Matthias Wegner
    Manfred Deicher
    Herbert Wolf
    Florian Brenner
    Herbert Hutter
    Rainer Abart
    Nicolaas A. Stolwijk
    Physics and Chemistry of Minerals, 2017, 44 : 345 - 351
  • [5] Potassium self-diffusion in a K-rich single-crystal alkali feldspar
    Hergemoeller, Fabian
    Wegner, Matthias
    Deicher, Manfred
    Wolf, Herbert
    Brenner, Florian
    Hutter, Herbert
    Abart, Rainer
    Stolwijk, Nicolaas A.
    PHYSICS AND CHEMISTRY OF MINERALS, 2017, 44 (05) : 345 - 351
  • [6] Chemically induced fracturing in alkali feldspar
    K. S. Scheidl
    A. -K. Schaeffer
    E. Petrishcheva
    G. Habler
    F. D. Fischer
    J. Schreuer
    R. Abart
    Physics and Chemistry of Minerals, 2014, 41 : 1 - 16
  • [7] Spinodal decomposition in alkali feldspar studied by atom probe tomography
    Petrishcheva, Elena
    Tiede, Lisa
    Schweinar, Kevin
    Habler, Gerlinde
    Li, Chen
    Gault, Baptiste
    Abart, Rainer
    PHYSICS AND CHEMISTRY OF MINERALS, 2020, 47 (07)
  • [8] Structural change of alkali feldspar by ball milling
    Nojiri, Hiromi
    Okuno, Masayuki
    Okudera, Hiroki
    Mizukami, Tomoyuki
    Arai, Shoji
    JOURNAL OF MINERALOGICAL AND PETROLOGICAL SCIENCES, 2013, 108 (05) : 267 - 277
  • [9] Alkali feldspar megacryst growth: Geochemical modelling
    E. Słaby
    L. Galbarczyk-Gąsiorowska
    R. Seltmann
    A. Müller
    Mineralogy and Petrology, 2007, 89 : 1 - 29
  • [10] The Cahn-Hilliard model of coherent lamellar microstructure: application to alkali feldspar
    Furukawa, Tan
    Tsujimori, Tatsuki
    CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 2024, 179 (10)