Graphene photodetectors for high-speed optical communications

被引:2156
作者
Mueller, Thomas [1 ]
Xia, Fengnian [1 ]
Avouris, Phaedon [1 ]
机构
[1] IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
基金
奥地利科学基金会;
关键词
SILICON; TRANSISTORS; PHOTODIODE; LAYER;
D O I
10.1038/NPHOTON.2010.40
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Although silicon has dominated solid-state electronics for more than four decades, a variety of other materials are used in photonic devices to expand the wavelength range of operation and improve performance. For example, gallium-nitride based materials enable light emission at blue and ultraviolet wave-lengths(1), and high index contrast silicon-on-insulator facilitates ultradense photonic devices(2,3). Here, we report the first use of a photodetector based on graphene(4,5), a two-dimensional carbon material, in a 10 Gbit s(-1) optical data link. In this interdigitated metal-graphene-metal photodetector, an asymmetric metallization scheme is adopted to break the mirror symmetry of the internal electric-field profile in conventional graphene field-effect transistor channels(6-9), allowing for efficient photo-detection. A maximum external photoresponsivity of 6.1 mA W-1 is achieved at a wavelength of 1.55 mu m. Owing to the unique band structure of graphene(10,11) and extensive developments in graphene electronics(12,13) and wafer-scale synthesis(13), graphene-based integrated electronic-photonic circuits with an operational wavelength range spanning 300 nm to 6 mm (and possibly beyond) can be expected in the future.
引用
收藏
页码:297 / 301
页数:5
相关论文
共 30 条
  • [1] Making graphene visible
    Blake, P.
    Hill, E. W.
    Castro Neto, A. H.
    Novoselov, K. S.
    Jiang, D.
    Yang, R.
    Booth, T. J.
    Geim, A. K.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (06)
  • [2] Fasol S.N., 1997, BLUE LASER DIODE GAN
  • [3] Counting graphene layers on glass via optical reflection microscopy
    Gaskell, P. E.
    Skulason, H. S.
    Rodenchuk, C.
    Szkopek, T.
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (14)
  • [4] Graphene: Status and Prospects
    Geim, A. K.
    [J]. SCIENCE, 2009, 324 (5934) : 1530 - 1534
  • [5] Doping graphene with metal contacts
    Giovannetti, G.
    Khomyakov, P. A.
    Brocks, G.
    Karpan, V. M.
    van den Brink, J.
    Kelly, P. J.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (02)
  • [6] Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping
    Kim, S
    Lim, YT
    Soltesz, EG
    De Grand, AM
    Lee, J
    Nakayama, A
    Parker, JA
    Mihaljevic, T
    Laurence, RG
    Dor, DM
    Cohn, LH
    Bawendi, MG
    Frangioni, JV
    [J]. NATURE BIOTECHNOLOGY, 2004, 22 (01) : 93 - 97
  • [7] Contact and edge effects in graphene devices
    Lee, Eduardo J. H.
    Balasubramanian, Kannan
    Weitz, Ralf Thomas
    Burghard, Marko
    Kern, Klaus
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (08) : 486 - 490
  • [8] High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode
    Li, N
    Li, XW
    Demiguel, S
    Zheng, XG
    Campbell, JC
    Tulchinsky, DA
    Williams, KJ
    Isshiki, TD
    Kinsey, GS
    Sudharsansan, R
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (03) : 864 - 866
  • [9] Dirac charge dynamics in graphene by infrared spectroscopy
    Li, Z. Q.
    Henriksen, E. A.
    Jiang, Z.
    Hao, Z.
    Martin, M. C.
    Kim, P.
    Stormer, H. L.
    Basov, D. N.
    [J]. NATURE PHYSICS, 2008, 4 (07) : 532 - 535
  • [10] 100-GHz Transistors from Wafer-Scale Epitaxial Graphene
    Lin, Y. -M.
    Dimitrakopoulos, C.
    Jenkins, K. A.
    Farmer, D. B.
    Chiu, H. -Y.
    Grill, A.
    Avouris, Ph.
    [J]. SCIENCE, 2010, 327 (5966) : 662 - 662