Exact Large Deviation Functional of a Stationary Open Driven Diffusive System: The Asymmetric Exclusion Process

被引:0
作者
B. Derrida
J. L. Lebowitz
E. R. Speer
机构
[1] École Normale Supérieure,Laboratoire de Physique Statistique
[2] Institute for Advanced Study,School of Mathematics
[3] Rutgers University,Department of Mathematics
[4] Rutgers University,Department of Physics
来源
Journal of Statistical Physics | 2003年 / 110卷
关键词
Large deviations; asymmetric simple exclusion process; open system; stationary nonequilibrium state;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the asymmetric exclusion process (ASEP) in one dimension on sites i=1,...,N, in contact at sites i=1 and i=N with infinite particle reservoirs at densities ρa and ρb. As ρa and ρb are varied, the typical macroscopic steady state density profile ¯ρ(x), x∈[a,b], obtained in the limit N=L(b−a)→∞, exhibits shocks and phase transitions. Here we derive an exact asymptotic expression for the probability of observing an arbitrary macroscopic profile \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\rho (x):{\text{ }}P_N (\{ \rho (x)\} ) \sim \exp [ - L\mathcal{F}_{[a,b]} (\{ \rho (x)\} ;\rho _a ,\rho _b )]$$ \end{document}, so that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}$$ \end{document} is the large deviation functional, a quantity similar to the free energy of equilibrium systems. We find, as in the symmetric, purely diffusive case q=1 (treated in an earlier work), that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}$$ \end{document} is in general a non-local functional of ρ(x). Unlike the symmetric case, however, the asymmetric case exhibits ranges of the parameters for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}(\{ \rho (x)\} )$$ \end{document} is not convex and others for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}(\{ \rho (x)\} )$$ \end{document} has discontinuities in its second derivatives at ρ(x)=¯ρ(x). In the latter ranges the fluctuations of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$1/\sqrt N $$ \end{document} in the density profile near ¯ρ(x) are then non-Gaussian and cannot be calculated from the large deviation function.
引用
收藏
页码:775 / 810
页数:35
相关论文
共 70 条
[1]  
Spohn H.(1983)Long range correlations for stochastic lattice gases in a non-equilibrium steady state J. Phys A. 16 4275-4291
[2]  
Schmitz R.(1988)Fluctuations in nonequilibrium fluids Phys. Reports 171 1-58
[3]  
Cross M. C.(1993)Pattern formation outside of equilibrium Rev. Mod. Phys. 65 851-1112
[4]  
Hohenberg P. C.(1994)Generic long-range correlations in molecular fluids Annu. Rev. Phys. Chem. 45 213-239
[5]  
Dorfman J. R.(1998)Concentration fluctuations in a polymer solution under a temperature gradient Phys. Rev. Lett. 81 5580-5583
[6]  
Kirkpatrick T. R.(1993)Exact solution of a 1D asymmetric exclusion model using a matrix formulation J. Phys. A 26 1493-1517
[7]  
Sengers J. V.(1988)Large deviations for Gibbs random fields Probab. Th. Rel. Fields 77 343-357
[8]  
Li W. B.(2002)Large deviation of the density profile in the symmetric simple exclusion process J. Stat. Phys. 107 599-634
[9]  
Zhang K. J.(2001)Free energy functional for nonequilibrium systems: an exactly solvable case Phys. Rev. Lett. 87 150601-2667
[10]  
Sengers J. V.(1994)Partial asymmetric exclusion process with open boundaries Phys. Rev. E 50 2660-7131