A Hermite-Gauss method for the approximation of eigenvalues of regular Sturm-Liouville problems

被引:0
作者
Rashad M Asharabi
机构
[1] Najran University,Department of Mathematics, College of Arts and Sciences
来源
Journal of Inequalities and Applications | / 2016卷
关键词
sinc methods; Sturm-Liouville problem; error bounds; convergence rate; 34L16; 65L15; 94A20;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, some authors have used the sinc-Gaussian sampling technique to approximate eigenvalues of boundary value problems rather than the classical sinc technique because the sinc-Gaussian technique has a convergence rate of the exponential order, O(e−(π−hσ)N/2/N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O (e^{-(\pi-h\sigma)N/2}/\sqrt{N} )$\end{document}, where σ, h are positive numbers and N is the number of terms in sinc-Gaussian technique. As is well known, the other sampling techniques (classical sinc, generalized sinc, Hermite) have a convergence rate of a polynomial order. In this paper, we use the Hermite-Gauss operator, which is established by Asharabi and Prestin (Numer. Funct. Anal. Optim. 36:419-437, 2015), to construct a new sampling technique to approximate eigenvalues of regular Sturm-Liouville problems. This technique will be new and its accuracy is higher than the sinc-Gaussian because Hermite-Gauss has a convergence rate of order O(e−(2π−hσ)N/2/N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O (e^{-(2\pi-h\sigma)N/2}/\sqrt {N} )$\end{document}. Numerical examples are given with comparisons with the best sampling technique up to now, i.e. sinc-Gaussian.
引用
收藏
相关论文
共 28 条
[1]  
Asharabi RM(2015)A modification of Hermite sampling with a Gaussian multiplier Numer. Funct. Anal. Optim. 36 419-437
[2]  
Prestin J(2007)Sinc approximation with a Gaussian multiplier Sampl. Theory Signal Image Process., Int. J. 6 199-221
[3]  
Schmeisser G(2008)Computing eigenvalues of boundary-value problems using sinc-Gaussian method Sampl. Theory Signal Image Process., Int. J. 7 293-311
[4]  
Stenger F(2013)A sinc-Gaussian technique for computing eigenvalues of second-order linear pencils Appl. Numer. Math. 63 129-137
[5]  
Annaby MH(2014)Approximation of eigenvalues of boundary value problems Bound. Value Probl. 62 323-334
[6]  
Asharabi RM(2013)Approximation of eigenvalues of discontinuous Sturm-Liouville problems with eigenparameter in all boundary conditions Bound. Value Probl. 46 671-690
[7]  
Annaby MH(1996)Eigenvalues of Sturm-Liouville systems using sampling theory Appl. Anal. 3 163-183
[8]  
Tharwat MM(2008)On sinc-based method in computing eigenvalues of boundary-value problems SIAM J. Numer. Anal. 27 366-380
[9]  
Tharwat MM(2008)Approximating eigenvalues of discontinuous problems by sampling theorems J. Numer. Math. 36 851-871
[10]  
Al-Harbi SM(2007)On computing eigenvalues of second-order linear pencils IMA J. Numer. Anal. 60 355-367