A hybrid algorithm for solving the absolute value equation

被引:0
|
作者
Olvi L. Mangasarian
机构
[1] University of Wisconsin,Computer Sciences Department
[2] University of California at San Diego,Department of Mathematics
来源
Optimization Letters | 2015年 / 9卷
关键词
Absolute value equation; Concave minimization; Linear programming; Linear equations;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a hybrid algorithm for solving the NP-hard absolute value equation (AVE): Ax-|x|=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax-|x|=b$$\end{document}, where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} is an n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} square matrix. The algorithm makes no assumptions on the AVE other than solvability and consists of solving iteratively a linear system of equations followed by a linear program. The algorithm was tested on 100 consecutively generated random solvable instances of the AVE with n=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=$$\end{document} 50, 100, 200, 500 and 1000. The algorithm solved 100%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$100\,\%$$\end{document} of the test problems to an accuracy of 10-8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-8}$$\end{document} by solving an average of 2.77 systems of linear equations and linear programs per AVE.
引用
收藏
页码:1469 / 1474
页数:5
相关论文
共 50 条
  • [41] Inexact Newton-type method for solving large-scale absolute value equation Ax - ÷x÷ = b
    Tang, Jingyong
    APPLICATIONS OF MATHEMATICS, 2024, 69 (01) : 49 - 66
  • [42] Inexact Newton-type method for solving large-scale absolute value equation Ax − |x| = b
    Jingyong Tang
    Applications of Mathematics, 2024, 69 : 49 - 66
  • [43] Sufficient conditions for the unsolvability and solvability of the absolute value equation
    Olvi L. Mangasarian
    Optimization Letters, 2017, 11 : 1469 - 1475
  • [44] Method of alternating projections for the general absolute value equation
    Alcantara, Jan Harold
    Chen, Jein-Shan
    Tam, Matthew K.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (01)
  • [45] A UNIFORM APPROXIMATION METHOD TO SOLVE ABSOLUTE VALUE EQUATION
    Esmaeili, H.
    Mahmoodabadi, E.
    Ahmadi, M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (05) : 1259 - 1269
  • [46] Modified BAS iteration method for absolute value equation
    Li, Cui-Xia
    Yong, Long-Quan
    AIMS MATHEMATICS, 2022, 7 (01): : 606 - 616
  • [47] Sufficient conditions for the unsolvability and solvability of the absolute value equation
    Mangasarian, Olvi L.
    OPTIMIZATION LETTERS, 2017, 11 (07) : 1469 - 1475
  • [48] GENERALIZED PERRON ROOTS AND SOLVABILITY OF THE ABSOLUTE VALUE EQUATION
    Radons, Manuel
    Tonelli-Cueto, Josue
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2023, 44 (04) : 1645 - 1666
  • [49] A Newton-type technique for solving absolute value equations
    Khan, Alamgir
    Iqbal, Javed
    Akgul, Ali
    Ali, Rashid
    Du, Yuting
    Hussain, Arafat
    Nisar, Kottakkaran Sooppy
    Vijayakumar, V.
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 64 : 291 - 296
  • [50] Two efficient iteration methods for solving the absolute value equations
    Yu, Xiaohui
    Wu, Qingbiao
    APPLIED NUMERICAL MATHEMATICS, 2025, 208 : 148 - 159