Solitary water wave interactions for the forced Korteweg–de Vries equation

被引:0
作者
Marcelo V. Flamarion
Roberto Ribeiro-Jr
机构
[1] UFRPE/Rural Federal University of Pernambuco,Departamento de Matemática, Centro Politécnico
[2] UACSA/Unidade Acadêmica do Cabo de Santo Agostinho,undefined
[3] UFPR/Federal University of Paraná,undefined
来源
Computational and Applied Mathematics | 2021年 / 40卷
关键词
KdV equation; water wave equation; solitons; collision of solitary waves; 76B15; 76B25; 35Q53;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this work is to study solitary water wave interactions between two topographic obstacles for the forced Korteweg–de Vries equation (fKdV). Focusing on the details of the interactions, we identify regimes in which solitary wave interactions maintain two well separated crests and regimes where the number of local maxima varies according to the laws 2→1→2→1→2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\rightarrow 1\rightarrow 2\rightarrow 1\rightarrow 2$$\end{document} or 2→1→2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\rightarrow 1\rightarrow 2$$\end{document}. It shows that the geometric Lax-categorization of Korteweg–de Vries (KdV) two-soliton interactions still holds for the fKdV equation.
引用
收藏
相关论文
共 26 条
[1]  
Craig W(2006)Solitary water wave interactions Phys Fluids 18 013117-1-013117-14
[2]  
Guynne P(2019)Soliton interaction with external forcing within the Korteweg-de Vries equation Chaos 29 433-464
[3]  
Hammack J(2019)Rotational waves generated by current-topography interaction Stud Appl Math 142 405-433
[4]  
Henderson D(2013)Stability of steady gravity waves generated by a moving localized pressure disturbance in water of finite depth Phys Fluids 25 1638-1660
[5]  
Sulem C(1994)Interaction of a solitary wave with an external force Phys. D 77 467-490
[6]  
Ermakov E(2012)Models for the formation of a critical layer in water wave propagation Phios Trans R Soc A 370 33-51
[7]  
Stepanyants Y(1968)Integrals of nonlinear equations of evolution and solitary waves Commun Pure Appl Math 21 475-492
[8]  
Flamarion MV(2004)The forced Korteweg-de Vries equation as a model for waves generated by topography CUBO A Math J 6 1214-1225
[9]  
Milewski PA(1982)Collisions between two solitary waves. Part 2. A numerical study J Fluid Mech 115 417-431
[10]  
Nachbin A(1984)On nonlinear flow with multiple obstructions J Atmos Sci 41 75-99