共 99 条
[71]
Shanthi T., Sabeenian R.S., Modified Alexnet architecture for classification of diabetic retinopathy images, Comput Electr. Eng, 76, (2019)
[72]
Shaukat F., Raja G., Gooya A., Frangi A.F., Fully automatic detection of lung nodules in CT images using a hybrid feature set: med, Phys., 44, pp. 3615-3629, (2017)
[73]
Shaukat F., Raja G., Ashraf R., Khalid S., Ahmad M., Ali A., Artificial neural network-based classification of lung nodules in CT images using intensity, shape and texture features, J Ambient Intell Human Comput, 10, pp. 4135-4149, (2019)
[74]
Shayesteh S.P., Shiri I., Karami A.H., Hashemian R., Kooranifar S., Ghaznavi H., Et al., Predicting lung cancer patients’ survival time via logistic regression-based models in a quantitative radiomic framework, J. Biomed. Phys. Eng., (2019)
[75]
Shen S., Bui A.A., Cong J., Hsu W., An automated lung segmentation approach using bidirectional chain codes to improve nodule detection accuracy, Computers in biology and medicine, 57, (2015)
[76]
Shen W., Et al., Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification, Pattern Recognition, 61, (2017)
[77]
Siegel R.L., Miller K.D., Jemal A., Cancer statistics, 2020, CA. Cancer J. Clin., 70, 1, (2020)
[78]
Singadkar G., Mahajan A., Thakur M., Talbar S., Automatic lung segmentation for the inclusion of juxtapleural nodules and pulmonary vessels using curvature based border correction, J King Saud Univ - Comput Inf Sci, (2018)
[79]
Sivakumar S., Chandrasekar C, (2013)
[80]
Soh L.K., Tsatsoulis C., Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices, IEEE Transactions on Geoscience & Remote Sensing, 37, (1999)