Biodiesel production from non-edible high acid value phoenix seed oil using a cheap immobilized lipase

被引:0
|
作者
Xuejing Liu
Kaiyue Li
Shangde Sun
机构
[1] Henan University of Technology,Lipid Technology and Engineering, School of Food Science and Engineering
来源
Biomass Conversion and Biorefinery | 2023年 / 13卷
关键词
High acid value phoenix seed oil; Immobilized lipase; Biodiesel; Fatty acid methyl ester; Esterification; Transesterification; Response surface methodology;
D O I
暂无
中图分类号
学科分类号
摘要
Fatty acid methyl ester (FAME) is one kind of renewable and biodegradable biodiesel energy. In this work, in order to decrease FAME production cost, a cheap immobilized lipase Lipozyme TLIM (Thermomyces lanuginosus lipase, 100$/kg) and waste phoenix seed (Firmiana platanifolia (L. f.) Marsili) oil with high free fatty acids (FFA) content (30.1 ± 0.4%) were used as catalyst and new feedstock, respectively. The effects of reaction variables were evaluated and optimized by response surface methodology. Results showed that Lipozyme TLIM can simultaneously catalyze the esterification and transesterification of high FFA phoenix seed oil to produce FAME. The conditions were optimized as follows: 11.8% water load added, 3.1:1 molar ratio of CH3OH to oil, and 7% lipase load at 33 °C for 6.47 h. High FAME yield (93.3 ± 1.6%) was achieved under the optimized conditions. Kinetic values (Vm and K’m) of FAME production were 2.66 × 10−2 mol/(L·min) and 7.4 mol/L, respectively, and the activation energy (Ea) was 42.62 kJ/mol. Therefore, a cheap immobilized lipase Lipozyme TLIM with a noted high level of tolerance of water could be useful in the industrial FAME production from phoenix seed oil with high FFA. After purified by molecular distillation, the contents of FAME, FFA, and water content of the final biodiesel product were 97.2%, 0.3%, and 0.04%, which were in accord with the quality standard of ASTM D6751 (>96.5%, <0.4%, and < 0.05%).
引用
收藏
页码:3187 / 3198
页数:11
相关论文
共 50 条
  • [31] Enzymatic production of biodiesel from canola oil using immobilized lipase
    Dizge, Nadir
    Keskinler, Buelent
    BIOMASS & BIOENERGY, 2008, 32 (12) : 1274 - 1278
  • [32] Synthesis and application of Co doped ZnO as heterogeneous nanocatalyst for biodiesel production from non-edible oil
    Borah, Manash Jyoti
    Devi, Anuchaya
    Borah, Raju
    Deka, Dhanapati
    RENEWABLE ENERGY, 2019, 133 : 512 - 519
  • [33] Biodiesel Production From High FFA Raphia vinifera Oil as a Potential Non-edible Feedstock: Process Optimization Using Response Surface Methodology
    Dolvine Nguemfo Dongmo
    Serges Bruno Lemoupi Ngomadé
    Meme Laloi Tongnang Ngueteu
    Cyrille Donlifack Atemkeng
    Cyrille Ghislain Fotsop
    Rufis Fregue Tiegam Tagne
    Neeraj Atray
    Théophile Kamgaing
    Chemistry Africa, 2024, 7 : 1481 - 1496
  • [34] Biodiesel Production From High FFA Raphia vinifera Oil as a Potential Non-edible Feedstock: Process Optimization Using Response Surface Methodology
    Dongmo, Dolvine Nguemfo
    Ngomade, Serges Bruno Lemoupi
    Ngueteu, Meme Laloi Tongnang
    Atemkeng, Cyrille Donlifack
    Fotsop, Cyrille Ghislain
    Tagne, Rufis Fregue Tiegam
    Atray, Neeraj
    Kamgaing, Theophile
    CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY, 2024, 7 (03): : 1481 - 1496
  • [35] Production of high quality biodiesel from novel non-edible Raphnus raphanistrum L. seed oil using copper modified montmorillonite clay catalyst
    Munir, M.
    Ahmad, M.
    Rehan, M.
    Saeed, M.
    Lam, Su Shiung
    Nizami, A. S.
    Waseem, A.
    Sultana, S.
    Zafar, M.
    ENVIRONMENTAL RESEARCH, 2021, 193
  • [36] Biodiesel production from a non-edible source of royna (Aphanamixis polystachya) oil
    Md. Wasikur Rahman
    Asim Kumar Mondal
    Md. Shakil Hasan
    Marzia Sultana
    Energy, Sustainability and Society, 12
  • [37] Biodiesel Production from Mixed Crude Oil of Non-Edible Marine Fishes
    Anand, M.
    Gobalakrishnan, M.
    Maruthupandy, M.
    Suresh, S.
    ENERGY AND ENVIRONMENT FOCUS, 2015, 4 (01) : 47 - 53
  • [38] Biodiesel production from bitter almond oil as new non-edible oil feedstock
    Al-Tikrity, Emaad T. B.
    Fadhil, Abdelrahman B.
    Ibraheem, Khalid K.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2017, 39 (07) : 649 - 656
  • [39] Emergy-based assessment of biodiesel production in India using edible and non-edible oil
    Das, S.
    Das, B.
    Misra, R. D.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2022, 19 (11) : 11117 - 11144
  • [40] Emergy-based assessment of biodiesel production in India using edible and non-edible oil
    S. Das
    B. Das
    R. D. Misra
    International Journal of Environmental Science and Technology, 2022, 19 : 11117 - 11144