Amperometric H2O2 sensor based on gold nanoparticles/poly (celestine blue) nanohybrid film

被引:0
|
作者
N. S. Sangeetha
S. Sriman Narayanan
机构
[1] Bhaktavatsalam Memorial College for Women,Department of Chemistry
[2] University of Madras,Department of Analytical Chemistry, School of Chemical Sciences
来源
SN Applied Sciences | 2019年 / 1卷
关键词
Poly (celestine blue); Gold nanoparticles; Hydrogen peroxide; Amperometry; Nanomaterial; Sensor;
D O I
暂无
中图分类号
学科分类号
摘要
The present paper demonstrates a significant hybrid nanofilm using gold nanoparticles (GNPs) and poly celestine blue (PCB) as an effective sensing material for hydrogen peroxide (H2O2). The surface assembly of the nanocatalyst GNPs provides greater surface area for improved layering of PCB on the electrode surface. Cyclic voltammetry, UV visible spectroscopy and field emission scanning electron microscopy studies confirmed the structure and morphology of the synthesized GNPs. Cyclic voltammetric characterization of the fabricated GNPs/PCB electrode was performed and under optimal conditions they exhibited enhanced electrochemical sensing towards H2O2 with better sensitivity and detection limit as 0.22 µA/µM and 3.9 × 10−6 M (S/N = 3). The interference studies using the GNPs/PCB modified electrode interprets the selectivity of the electrode towards H2O2. The proposed sensor was highly stable and was effectively applied for analysis of H2O2 in real samples.
引用
收藏
相关论文
共 50 条
  • [21] Development of a novel nitrite amperometric sensor based on poly(toluidine blue) film electrode
    Yang, Chunhai
    Xu, Junhui
    Hu, Shengshui
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2007, 11 (04) : 514 - 520
  • [22] A new amperometric H2O2 biosensor based on nanocomposite films of chitosan-MWNTs, hemoglobin, and silver nanoparticles
    Li, Yancai
    Li, Yuanjun
    Yang, Yiyun
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (03) : 1133 - 1140
  • [23] A Label-Free Colorimetric Assay Based on Gold Nanoparticles for the Detection of H2O2 and Glucose
    Zheng, Cong
    Wu, Da
    Wang, Tao
    Xiao, Jianhong
    Yu, Li
    CHEMOSENSORS, 2022, 10 (03)
  • [24] Functionalization of graphene with Prussian blue and its application for amperometric sensing of H2O2
    Li, Su-Juan
    Du, Ji-Min
    Shi, Yun-Feng
    Li, Wan-Jun
    Liu, Shui-Ren
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (06) : 2235 - 2241
  • [25] Development of a novel nitrite amperometric sensor based on poly(toluidine blue) film electrode
    Chunhai Yang
    Junhui Xu
    Shengshui Hu
    Journal of Solid State Electrochemistry, 2007, 11 : 514 - 520
  • [26] Electrochemical behavior of H2O2 on gold
    Gerlache, M
    Senturk, Z
    Quarin, G
    Kauffmann, JM
    ELECTROANALYSIS, 1997, 9 (14) : 1088 - 1092
  • [27] Electrocatalytic H2O2 amperometric detection using gold nanotube electrode ensembles
    Delvaux, M
    Walcarius, A
    Demoustier-Champagne, S
    ANALYTICA CHIMICA ACTA, 2004, 525 (02) : 221 - 230
  • [28] Electrochemical H2O2 Sensor Based on Graphene Oxide-Iron Oxide Nanoparticles Composite
    Bas, Salih Zeki
    Ozmen, Mustafa
    Yildiz, Salih
    PROCEEDINGS OF THE 2017 IEEE 7TH INTERNATIONAL CONFERENCE NANOMATERIALS: APPLICATION & PROPERTIES (NAP), 2017,
  • [29] Electrochemical sensor based on rGO/Au nanoparticles for monitoring H2O2 released by human macrophages
    Patella, B.
    Buscetta, M.
    Di Vincenzo, S.
    Ferraro, M.
    Aiello, G.
    Sunseri, C.
    Pace, E.
    Inguanta, R.
    Cipollina, C.
    SENSORS AND ACTUATORS B-CHEMICAL, 2021, 327
  • [30] A Novel Near-Infrared Fluorescence Sensor for H2O2 Based on N-Acetyl-L-Cysteine-Capped Gold Nanoparticles
    Dong, Wenjuan
    Han, Jiyan
    Wu, Xin
    Fan, Li
    Liang, Wenting
    JOURNAL OF NANO RESEARCH, 2017, 46 : 234 - 240