On estimating the rate of best trigonometric approximation by a modulus of smoothness

被引:0
作者
Borislav R. Draganov
Parvan E. Parvanov
机构
[1] University of Sofia,Department of Mathematics and Informatics
[2] Bulgarian Academy of Science,Institute of Mathematics and Informatics
来源
Acta Mathematica Hungarica | 2011年 / 131卷
关键词
best trigonometric approximation; modulus of smoothness; -functional; trigonometric B-spline; 42A10; 41A10; 41A25; 41A27; 41A50; 42A38; 42A85;
D O I
暂无
中图分类号
学科分类号
摘要
Best trigonometric approximation in Lp, 1≦p≦∞, is characterized by a modulus of smoothness, which is equivalent to zero if the function is a trigonometric polynomial of a given degree. The characterization is similar to the one given by the classical modulus of smoothness. The modulus possesses properties similar to those of the classical one.
引用
收藏
页码:360 / 379
页数:19
相关论文
共 13 条
[1]  
Babenko A. G.(1999)The Jackson–Stechkin inequality in Mat. Zametki 65 928-932
[2]  
Chernykh N. I.(1967) with a trigonometric modulus of continuity Mat. Zametki 2 513-522
[3]  
Shevaldin V. T.(2002)Best approximation of periodic functions by trigonometric polynomials in East J. Approx. 8 465-499
[4]  
Chernykh N. I.(2009)A new modulus of smoothness for trigonometric polynomial approximation Const. Approx. 29 157-179
[5]  
Draganov B. R.(1964)On the exact constant in the Jackson–Stechkin inequality for the uniform metric J. Math. Mech. 13 795-825
[6]  
Foucart S.(1977)On trigonometric spline interpolation Mat. Zametki 21 161-172
[7]  
Kryakin Y.(1980)Some linear differential operators and generalized finite differences Mat. Zametki 27 721-740
[8]  
Shadrin A.(1983)Extremal interpolation with smallest value of the norm of a linear differential operator Tr. Mat. Inst. Steklova 164 203-240
[9]  
Schoenberg I. J.(undefined)Some problems of extremal interpolation in the mean for linear difference operators undefined undefined undefined-undefined
[10]  
Sharma A.(undefined)undefined undefined undefined undefined-undefined