Optimal decay rates of classical solutions for the full compressible MHD equations

被引:0
|
作者
Jincheng Gao
Qiang Tao
Zheng-an Yao
机构
[1] Sun Yat-sen University,School of Mathematics and Computational Science
[2] Shenzhen University,School of Mathematics and Statistics
关键词
Full compressible MHD equations; Global classical solutions; Optimal decay rate; Fourier splitting method; 76W05; 35Q35; 35D05; 76X05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concerned with optimal decay rates for higher-order spatial derivatives of classical solutions to the full compressible MHD equations in three-dimensional whole space. If the initial perturbation is small in H3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^3}$$\end{document}-norm and bounded in Lq(q∈1,65)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^q(q\in \left[1, \frac{6}{5} \right))}$$\end{document}-norm, we apply the Fourier splitting method by Schonbek (Arch Ration Mech Anal 88:209–222, 1985) to establish optimal decay rates for the second-order spatial derivatives of solutions and the third-order spatial derivatives of magnetic field in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^2}$$\end{document}-norm. These results improve the work of Pu and Guo (Z Angew Math Phys 64:519–538, 2013).
引用
收藏
相关论文
共 50 条
  • [1] Optimal decay rates of classical solutions for the full compressible MHD equations
    Gao, Jincheng
    Tao, Qiang
    Yao, Zheng-an
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (02):
  • [2] GLOBAL EXISTENCE AND OPTIMAL DECAY RATES OF SOLUTIONS FOR COMPRESSIBLE HALL-MHD EQUATIONS
    Gao, Jincheng
    Yao, Zheng-An
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (06) : 3077 - 3106
  • [3] Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations
    Li, Fucai
    Yu, Hongjun
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 : 109 - 126
  • [4] The optimal decay rates of classical solutions to the 3D compressible Navier-Stokes equations
    Xu, Fuyi
    Chi, Meiling
    Jiang, Jiqiang
    Cui, Yujun
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2021, 101 (10):
  • [5] Global existence and convergence rates of smooth solutions for the full compressible MHD equations
    Xueke Pu
    Boling Guo
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 519 - 538
  • [6] Global existence and convergence rates of smooth solutions for the full compressible MHD equations
    Pu, Xueke
    Guo, Boling
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (03): : 519 - 538
  • [7] Optimal Convergence Rates for the Strong Solutions to the Compressible MHD Equations with Potential Force
    Ouyang, Miao
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [8] Optimal decay rates of the compressible magnetohydrodynamic equations
    Tan, Zhong
    Wang, Huaqiao
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) : 188 - 201
  • [9] SPACE-TIME DECAY RATES FOR THE 3D FULL COMPRESSIBLE MHD EQUATIONS
    Chen, Yuang
    LUo, Zhengyan
    Zhang, Yinghui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (01): : 245 - 281
  • [10] Decay Rates of the Compressible Hall-MHD Equations for Quantum Plasmas
    Xi, Xiaoyu
    Pu, Xueke
    Guo, Boling
    ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) : 459 - 481