Random walks on groups and KMS states

被引:0
作者
Johannes Christensen
Klaus Thomsen
机构
[1] Aarhus University,Department of Mathematics
[2] Ny Munkegade,undefined
来源
Monatshefte für Mathematik | 2021年 / 196卷
关键词
KMS states; Random walks; Martin boundary; 46L60; 82B41;
D O I
暂无
中图分类号
学科分类号
摘要
A classical construction associates to a transient random walk on a discrete group Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} a compact Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-space ∂MΓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _M \Gamma $$\end{document} known as the Martin boundary. The resulting crossed product C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra C(∂MΓ)⋊rΓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(\partial _M \Gamma ) \rtimes _r \Gamma $$\end{document} comes equipped with a one-parameter group of automorphisms given by the Martin kernels that define the Martin boundary. In this paper we study the KMS states for this flow and obtain a complete description when the Poisson boundary of the random walk is trivial and when Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a torsion free non-elementary hyperbolic group. We also construct examples to show that the structure of the KMS states can be more complicated beyond these cases.
引用
收藏
页码:15 / 37
页数:22
相关论文
共 29 条
  • [1] Bartholdi L(2017)Poisson-Furstenberg boundary and growth of groups Probab. Theory Related Fields 168 347-372
  • [2] Erschler A(2007)Internal diffusion limited aggregation on discrete groups having exponential growth Theory Relat. Fields 137 323-343
  • [3] Blachère S(2017)-simplicity and the unique trace property for discrete groups Publ. Math. Inst. Hautes Études Sci. 126 35-71
  • [4] Brofferio S(2005)Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel-Leader graphs Ann. I. H. Poincaré 41 1101-1123
  • [5] Breuillard E(1991)The Martin boundary for general isotropic random walks in a tree J. Theor. Prob. 4 111-136
  • [6] Kalantar M(1995)Geometry from the spectral point of view Lett. Math. Phys. 34 203-238
  • [7] Kennedy M(2015)Martin boundary of random walks with unbounded jumps in hyperbolic groups Ann. Prob. 43 2374-2404
  • [8] Ozawa N(2008)The ration set of the hyperbolic measure of a random walk on a hyperbolic group Israel J. Math. 163 285-316
  • [9] Brofferio S(1995)The Poisson boundary of covering Markov operators Israel J. Math. 89 77-134
  • [10] Woess W(2000)The Poisson boundary for groups with hyperbolic properties Ann. Math. 152 659-692