Convergence and sparsity of Lasso and group Lasso in high-dimensional generalized linear models

被引:0
|
作者
Lichun Wang
Yuan You
Heng Lian
机构
[1] Beijing Jiaotong University,Department of Mathematics
[2] Nanyang Technological University,Division of Mathematical Sciences, School of Physical and Mathematical Sciences
来源
Statistical Papers | 2015年 / 56卷
关键词
Grouped variables; Lasso penalty; Variable selection;
D O I
暂无
中图分类号
学科分类号
摘要
In this short paper, we investigate Lasso regularized generalized linear models in the “small n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, large p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}” setting. While similar problems have been well-studied with SCAD penalty, the study of Lasso penalty is mostly restricted to the least squares loss function. Here we show the convergence rate of the Lasso penalized estimator as well as the sparsity property under suitable assumptions. We also extend the results to group Lasso regularized models when the variables are naturally grouped.
引用
收藏
页码:819 / 828
页数:9
相关论文
共 50 条
  • [41] Empirical extensions of the lasso penalty to reduce the false discovery rate in high-dimensional Cox regression models
    Ternes, Nils
    Rotolo, Federico
    Michiels, Stefan
    STATISTICS IN MEDICINE, 2016, 35 (15) : 2561 - 2573
  • [42] ET-Lasso: A New Efficient Tuning of Lasso-type Regularization for High-Dimensional Data
    Yang, Songshan
    Wen, Jiawei
    Zhan, Xiang
    Kifer, Daniel
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 607 - 616
  • [43] A BOOTSTRAP LASSO plus PARTIAL RIDGE METHOD TO CONSTRUCT CONFIDENCE INTERVALS FOR PARAMETERS IN HIGH-DIMENSIONAL SPARSE LINEAR MODELS
    Liu, Hanzhong
    Xu, Xin
    Li, Jingyi Jessica
    STATISTICA SINICA, 2020, 30 (03) : 1333 - 1355
  • [44] Introduction to the LASSO A Convex Optimization Approach for High-dimensional Problems
    Gauraha, Niharika
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2018, 23 (04): : 439 - 464
  • [45] Pathway Lasso: pathway estimation and selection with high-dimensional mediators
    Zhao, Yi
    Luo, Xi
    STATISTICS AND ITS INTERFACE, 2022, 15 (01) : 39 - 50
  • [46] LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark Suite for Lasso
    Sehic, Kenan
    Gramfort, Alexandre
    Salmon, Joseph
    Nardi, Luigi
    INTERNATIONAL CONFERENCE ON AUTOMATED MACHINE LEARNING, VOL 188, 2022, 188
  • [47] PENALIZED ESTIMATION OF HIGH-DIMENSIONAL MODELS UNDER A GENERALIZED SPARSITY CONDITION
    Horowitz, Joel L.
    Huang, Jian
    STATISTICA SINICA, 2013, 23 (02) : 725 - 748
  • [48] NON-ASYMPTOTIC ORACLE INEQUALITIES FOR THE LASSO AND GROUP LASSO IN HIGH DIMENSIONAL LOGISTIC MODEL
    Kwemou, Marius
    ESAIM-PROBABILITY AND STATISTICS, 2016, 20 : 309 - 331
  • [49] Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using l1-Constrained Quadratic Programming (Lasso)
    Wainwright, Martin J.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (05) : 2183 - 2202
  • [50] A non-negative spike-and-slab lasso generalized linear stacking prediction modeling method for high-dimensional omics data
    Shen, Junjie
    Wang, Shuo
    Dong, Yongfei
    Sun, Hao
    Wang, Xichao
    Tang, Zaixiang
    BMC BIOINFORMATICS, 2024, 25 (01)