Convergence and sparsity of Lasso and group Lasso in high-dimensional generalized linear models

被引:0
|
作者
Lichun Wang
Yuan You
Heng Lian
机构
[1] Beijing Jiaotong University,Department of Mathematics
[2] Nanyang Technological University,Division of Mathematical Sciences, School of Physical and Mathematical Sciences
来源
Statistical Papers | 2015年 / 56卷
关键词
Grouped variables; Lasso penalty; Variable selection;
D O I
暂无
中图分类号
学科分类号
摘要
In this short paper, we investigate Lasso regularized generalized linear models in the “small n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, large p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}” setting. While similar problems have been well-studied with SCAD penalty, the study of Lasso penalty is mostly restricted to the least squares loss function. Here we show the convergence rate of the Lasso penalized estimator as well as the sparsity property under suitable assumptions. We also extend the results to group Lasso regularized models when the variables are naturally grouped.
引用
收藏
页码:819 / 828
页数:9
相关论文
共 50 条
  • [31] Minimum Distance Lasso for robust high-dimensional regression
    Lozano, Aurelie C.
    Meinshausen, Nicolai
    Yang, Eunho
    ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 1296 - 1340
  • [32] On the sign consistency of the Lasso for the high-dimensional Cox model
    Lv, Shaogao
    You, Mengying
    Lin, Huazhen
    Lian, Heng
    Huang, Jian
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 167 : 79 - 96
  • [33] ASYMPTOTIC ANALYSIS OF HIGH-DIMENSIONAL LAD REGRESSION WITH LASSO
    Gao, Xiaoli
    Huang, Jian
    STATISTICA SINICA, 2010, 20 (04) : 1485 - 1506
  • [34] The sparse group lasso for high-dimensional integrative linear discriminant analysis with application to alzheimer's disease prediction
    Chen, Hao
    He, Yong
    Ji, Jiadong
    Shi, Yufeng
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (17) : 3218 - 3231
  • [35] LASSO Isotone for High-Dimensional Additive Isotonic Regression
    Fang, Zhou
    Meinshausen, Nicolai
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (01) : 72 - 91
  • [36] Robust adaptive LASSO in high-dimensional logistic regression
    Basu, Ayanendranath
    Ghosh, Abhik
    Jaenada, Maria
    Pardo, Leandro
    STATISTICAL METHODS AND APPLICATIONS, 2024, : 1217 - 1249
  • [37] Robust adaptive LASSO in high-dimensional logistic regressionRobust adaptive LASSO in high-dimensional logistic regressionA. Basu et al.
    Ayanendranath Basu
    Abhik Ghosh
    Maria Jaenada
    Leandro Pardo
    Statistical Methods & Applications, 2024, 33 (5) : 1217 - 1249
  • [38] High-Dimensional LASSO-Based Computational Regression Models: Regularization, Shrinkage, and Selection
    Emmert-Streib, Frank
    Dehmer, Matthias
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2019, 1 (01): : 359 - 383
  • [39] Debiased lasso for generalized linear models with a diverging number of covariates
    Xia, Lu
    Nan, Bin
    Li, Yi
    BIOMETRICS, 2023, 79 (01) : 344 - 357
  • [40] Adaptive Lasso for generalized linear models with a diverging number of parameters
    Cui, Yan
    Chen, Xia
    Yan, Li
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (23) : 11826 - 11842