A new projected Barzilai–Borwein method for the symmetric cone complementarity problem

被引:0
作者
Xiangjing Liu
Sanyang Liu
机构
[1] Xidian University,School of mathematics and statistics
来源
Japan Journal of Industrial and Applied Mathematics | 2020年 / 37卷
关键词
Euclidean Jordan algebra; Symmetric cone; Projected method; Barzilai–Borwein steplength; Complementarity problem; 65K05; 90C33;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a new projected Barzilai–Borwein method for the complementarity problem over symmetric cone by applying the Barzilai–Borwein-like steplengths to the projected method. A new descent direction is employed and a non-monotone line search is used in the method in order to guarantee the global convergence. The projected Barzilai–Borwein method is proved to be globally convergent under some suitable conditions. Some preliminary computational results are also reported which confirm the good theoretical properties of the proposed method.
引用
收藏
页码:867 / 882
页数:15
相关论文
共 37 条
  • [1] Alizadeh F(2003)Second-order cone programming Math. Program. 95 3-51
  • [2] Goldfarb D(2011)Full Nesterov–Todd step infeasible interior-point method for symmetric optimization Eur. J. Oper. Res. 214 473-484
  • [3] Gu F(1990)Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications Math. Program. 48 161-220
  • [4] Zangiabadi M(2003)Extension of primal-dual interior-point algorithms to symmetric cones Math. Program. 96 409-438
  • [5] Roos C(2013)A new full Nesterov–Todd step feasible interior-point method for convex quadratic symmetric cone optimization Appl. Math. Comput. 221 329-343
  • [6] Harker PT(2010)Smoothing algorithms for complementarity problems over symmetric cones Comput. Optim. Appl. 45 557-579
  • [7] Pang JS(2014)A smoothing Newton algorithm for a class of non-monotonic symmetric cone linear complementarity problems J. Optim. Theory Appl. 161 446-464
  • [8] Schmieta SH(2009)Path-following interior point algorithms for the Cartesian Sci. China Ser. A. 52 1769-1784
  • [9] Alizadeh F(2006)-LCP over symmetric cones SIAM J. Optim. 17 1129-1153
  • [10] Wang GQ(2019)Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones Optimiz. 68 2191-2202