Arboreal Galois representations

被引:0
作者
Nigel Boston
Rafe Jones
机构
[1] University of Wisconsin,
来源
Geometriae Dedicata | 2007年 / 124卷
关键词
Galois representation; Rooted tree; Tree automorphisms; Pro-p group; Iterates; Monodromy groups; 11F80; 11R32; 20E08; 20E18;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\mathbb{Q}}$$\end{document} be the absolute Galois group of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Q}$$\end{document}, and let T be the complete rooted d-ary tree, where d ≥ 2. In this article, we study “arboreal” representations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\mathbb{Q}}$$\end{document} into the automorphism group of T, particularly in the case d =  2. In doing so, we propose a parallel to the well-developed and powerful theory of linear p-adic representations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\mathbb{Q}$$\end{document}. We first give some methods of constructing arboreal representations and discuss a few results of other authors concerning their size in certain special cases. We then discuss the analogy between arboreal and linear representations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\mathbb{Q}}$$\end{document}. Finally, we present some new examples and conjectures, particularly relating to the question of which subgroups of Aut(T) can occur as the image of an arboreal representation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\mathbb{Q}}$$\end{document}.
引用
收藏
页码:27 / 35
页数:8
相关论文
共 13 条
[1]  
Aitken W.(2005)Finitely ramified iterated extensions Int. Math. Res. Not. 14 855-880
[2]  
Hajir F.(2001)On the modularity of elliptic curves over Q: wild 3-adic exercises J. Amer. Math. Soc 14 843-939
[3]  
Maire C.(1963)On Izv. Akad. Nauk SSSR Ser. Mat. 27 463-466
[4]  
Breuil C.(1972)-extensions with one critical number Invent. Math. 15 259-331
[5]  
Conrad B.(1987)Propriétés galoisiennes des points d’ordre fini des courbes elliptiques Duke Math. J. 54 179-230
[6]  
Diamond F.(1966)Sur les représentations modulaires de degré 2 de J. Reine Angew. Math. 221 209-220
[7]  
Taylor R.(1992)A reciprocity law in non-solvable extensions Arch. Math. (Basel) 59 239-244
[8]  
Markšaĭtis G.N.(1995)Galois groups over Ann. of Math. (2) 141 443-551
[9]  
Serre J.-P.(undefined) of some iterated polynomials undefined undefined undefined-undefined
[10]  
Serre J.-P.(undefined)Modular elliptic curves and Fermat’s last theorem’ undefined undefined undefined-undefined