Scalar Curvatures of Invariant Almost Hermitian Structures on Flag Manifolds with Two and Three Isotropy Summands

被引:0
|
作者
Lino Grama
Ailton R. Oliveira
机构
[1] Imecc - Unicamp,Departamento de Matemática
[2] UEMS - Universidade Estadual de Mato Grosso do Sul - MS,undefined
来源
关键词
Almost Hermitian geometry; Chern curvature; Flag manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study invariant almost Hermitian geometry on generalized flag manifolds which the isotropy representation decompose into two or three irreducible components. We will provide a classification of such flag manifolds admitting Kähler like scalar curvature metric, that is, almost Hermitian structures (g, J) satisfying s=2sC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=2s_C$$\end{document} where s is Riemannian scalar curvature and sC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_C$$\end{document} is the Chern scalar curvature.
引用
收藏
相关论文
共 50 条