Scalar Curvatures of Invariant Almost Hermitian Structures on Flag Manifolds with Two and Three Isotropy Summands

被引:0
|
作者
Lino Grama
Ailton R. Oliveira
机构
[1] Imecc - Unicamp,Departamento de Matemática
[2] UEMS - Universidade Estadual de Mato Grosso do Sul - MS,undefined
来源
关键词
Almost Hermitian geometry; Chern curvature; Flag manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study invariant almost Hermitian geometry on generalized flag manifolds which the isotropy representation decompose into two or three irreducible components. We will provide a classification of such flag manifolds admitting Kähler like scalar curvature metric, that is, almost Hermitian structures (g, J) satisfying s=2sC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=2s_C$$\end{document} where s is Riemannian scalar curvature and sC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_C$$\end{document} is the Chern scalar curvature.
引用
收藏
相关论文
共 50 条
  • [1] Scalar Curvatures of Invariant Almost Hermitian Structures on Flag Manifolds with Two and Three Isotropy Summands
    Grama, Lino
    Oliveira, Ailton R.
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (10)
  • [2] Scalar Curvatures of Invariant Almost Hermitian Structures on Generalized Flag Manifolds
    Grama, Lino
    Oliveira, Ailton R.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2021, 17
  • [3] Invariant Einstein metrics on real flag manifolds with two or three isotropy summands
    Grajales, Brian
    Grama, Lino
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 176
  • [4] Invariant almost Hermitian structures on flag manifolds
    San Martin, LAB
    Negreiros, CJC
    ADVANCES IN MATHEMATICS, 2003, 178 (02) : 277 - 310
  • [5] INVARIANT EINSTEIN METRICS ON GENERALIZED FLAG MANIFOLDS WITH TWO ISOTROPY SUMMANDS
    Arvanitoyeorgos, Andreas
    Chrysikos, Ioannis
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 90 (02) : 237 - 251
  • [6] Invariant Einstein metrics on flag manifolds with four isotropy summands
    Andreas Arvanitoyeorgos
    Ioannis Chrysikos
    Annals of Global Analysis and Geometry, 2010, 37 : 185 - 219
  • [7] Invariant Einstein metrics on flag manifolds with four isotropy summands
    Arvanitoyeorgos, Andreas
    Chrysikos, Ioannis
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 37 (02) : 185 - 219
  • [8] Equigeodesics on Generalized Flag Manifolds with Two Isotropy Summands
    Lino Grama
    Caio J. C. Negreiros
    Results in Mathematics, 2011, 60 : 405 - 421
  • [9] Equigeodesics on Generalized Flag Manifolds with Two Isotropy Summands
    Grama, Lino
    Negreiros, Caio J. C.
    RESULTS IN MATHEMATICS, 2011, 60 (1-4) : 405 - 421
  • [10] A rank-three condition for invariant (1, 2)-symplectic almost Hermitian structures on flag manifolds
    Nir Cohen
    Caio J.C. Negreiros
    Luiz A.B. San Martin
    Bulletin of the Brazilian Mathematical Society, New Series, 2002, 33 : 49 - 73