Local convergence of a relaxed two-step Newton like method with applications

被引:0
|
作者
I. K. Argyros
Á. A. Magreñán
L. Orcos
J. A. Sicilia
机构
[1] Cameron University,Department of Mathematical Sciences
[2] Universidad Internacional de La Rioja (UNIR),undefined
来源
关键词
Two-step Newton’s method; Banach space; Fréchet derivative; Divided difference of first order; Local–semilocal convergence; 65D10; 65D99;
D O I
暂无
中图分类号
学科分类号
摘要
We present a local convergence analysis for a relaxed two-step Newton-like method. We use this method to approximate a solution of a nonlinear equation in a Banach space setting. Hypotheses on the first Fréchet derivative and on the center divided-difference of order one are used. In earlier studies such as Amat et al. (Numer Linear Algebra Appl 17:639–653, 2010, Appl Math Lett 25(12):2209–2217, 2012, Appl Math Comput 219(24):11341–11347, 2013, Appl Math Comput 219(15):7954–7963, 2013, Reducing Chaos and bifurcations in Newton-type methods. Abstract and applied analysis. Hindawi Publishing Corporation, Cairo, 2013) these methods are analyzed under hypotheses up to the second Fréchet derivative and divided differences of order one. Numerical examples are also provided in this work.
引用
收藏
页码:1427 / 1442
页数:15
相关论文
共 50 条
  • [1] Local convergence of a relaxed two-step Newton like method with applications
    Argyros, I. K.
    Magrenan, A. A.
    Orcos, L.
    Sicilia, J. A.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2017, 55 (07) : 1427 - 1442
  • [2] Local Convergence and the Dynamics of a Two-Step Newton-Like Method
    Argyros, Ioannis K.
    Alberto Magrenan, A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (05):
  • [3] On a two-step relaxed Newton-type method
    Amat, S.
    Magrenan, A. A.
    Romero, N.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (24) : 11341 - 11357
  • [4] Study of Local Convergence and Dynamics of a King-Like Two-Step Method with Applications
    Argyros, Ioannis K.
    Alberto Magrenan, Angel
    Moysi, Alejandro
    Sarria, Inigo
    Sicilia Montalvo, Juan Antonio
    MATHEMATICS, 2020, 8 (07)
  • [5] On the local convergence of fast two-step Newton-like methods for solving nonlinear equations
    Argyros, I. K.
    Hilout, S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 245 : 1 - 9
  • [6] On the election of the damped parameter of a two-step relaxed Newton-type method
    Amat, Sergio
    Busquier, Sonia
    Bermudez, Concepcion
    Alberto Magrenan, A.
    NONLINEAR DYNAMICS, 2016, 84 (01) : 9 - 18
  • [7] On the election of the damped parameter of a two-step relaxed Newton-type method
    Sergio Amat
    Sonia Busquier
    Concepción Bermúdez
    Á. Alberto Magreñán
    Nonlinear Dynamics, 2016, 84 : 9 - 18
  • [8] A Two-Step Newton Algorithm for the Weighted Complementarity Problem with Local Biquadratic Convergence
    Liu, Xiangjing
    Liu, Yihan
    Zhang, Jianke
    AXIOMS, 2023, 12 (09)
  • [9] On the Local Convergence of Two-Step Newton Type Method in Banach Spaces under Generalized Lipschitz Conditions
    Saxena, Akanksha
    Argyros, Ioannis K.
    Jaiswal, Jai P.
    Argyros, Christopher
    Pardasani, Kamal R.
    MATHEMATICS, 2021, 9 (06)
  • [10] On a two-step optimal Steffensen-type method: Relaxed local and semi-local convergence analysis and dynamical stability
    Moccari, Mandana
    Lotfi, Taher
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 468 (01) : 240 - 269