Integro-Differential Equations of Fractional Order

被引:1
作者
Saïd Abbas
Mouffak Benchohra
John R. Graef
机构
[1] Laboratoire de Mathématiques, Université de Saïda, 20000 Saïda
[2] Laboratoire de Mathématiques, Université de Sidi Bel-Abbès, 22000 Sidi Bel-Abbes
[3] Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN
关键词
Banach's contraction principle; Caputo fractional-order derivative; solution; Integro-differential equation; Left-sided mixed Riemann-Liouville integral of fractional order; Nonlinear alternative of Leray-Schauder type; Schauder's fixed point theorem;
D O I
10.1007/s12591-012-0110-1
中图分类号
学科分类号
摘要
In this paper, the authors present some results concerning the existence and uniqueness of solutions of an integro-differential equation of fractional order by using Banach's contraction principle, Schauder's fixed point theorem, and the nonlinear alternative of Leray-Schauder type. © 2012 Foundation for Scientific Research and Technological Innovation.
引用
收藏
页码:139 / 148
页数:9
相关论文
共 16 条
  • [1] Abbas S., Benchohra M., Darboux problem for perturbed partial differential equations of fractional order with finite delay, Nonlinear Anal. Hybrid Syst., 3, pp. 597-604, (2009)
  • [2] Abbas S., Benchohra M., On the set of solutions of fractional order Riemann-Liouville integral inclusions, Demonstr Math (to appear)
  • [3] Bielecki A., Une remarque sur la méthod de Banach-Cacciopoli-Tikhonov dans la théorie des équations différentilles ordinaries, Bull. Acad. Pol. Sci. Math. Phys. Astron., 4, pp. 261-264, (1956)
  • [4] Burton T.A., A fixed point theorem of Krasnosel'skii, Appl. Math. Lett., 11, pp. 85-88, (1998)
  • [5] Granas A., Dugundji J., Fixed Point Theory, (2003)
  • [6] Henry D., Geometric Theory of Semilinear Parabolic Partial Differential Equations, (1989)
  • [7] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, (2006)
  • [8] Krasnosel'skii M.A., Topological Methods in the Theory of Nonlinear Integral Equations, (1964)
  • [9] Muresan V., Functional-Integral Equations, (2003)
  • [10] Muresan V., Some results on the solutions of a functional-integral equation, Stud. Univ. Babes-Bolyai Math., 56, pp. 157-164, (2011)