The Convexity of Entire Spacelike Hypersurfaces with Constant σn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{n-1}$$\end{document} Curvature in Minkowski Space

被引:0
作者
Changyu Ren
Zhizhang Wang
Ling Xiao
机构
[1] Jilin University,School of Mathematical Science
[2] Fudan University,School of Mathematical Science
[3] University of Connecticut,Department of Mathematics
关键词
Convexity; Constant curvature hypersurfaces; Minkowski space; 53C42; 35J60; 49Q10; 53C50;
D O I
10.1007/s12220-024-01630-9
中图分类号
学科分类号
摘要
We prove that, in Minkowski space, if a spacelike, (n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-1)$$\end{document}-convex hypersurface M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} with constant σn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{n-1}$$\end{document} curvature has bounded principal curvatures, then M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} is convex. Moreover, if M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} is not strictly convex, after an Rn,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{n,1}$$\end{document} rigid motion, M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} splits as a product Mn-1×R.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}^{n-1}\times \mathbb {R}.$$\end{document}
引用
收藏
相关论文
共 38 条
[21]  
Guan P(1982)On the curvature estimates for Hessian equations Invent. Math. 66 39-56
[22]  
Ma X-N(undefined)Entire spacelike hypersurfaces of constant mean curvature in Minkowski space undefined undefined undefined-undefined
[23]  
Guan B(undefined)undefined undefined undefined undefined-undefined
[24]  
Jian H-Y(undefined)undefined undefined undefined undefined-undefined
[25]  
Schoen RM(undefined)undefined undefined undefined undefined-undefined
[26]  
Guan P(undefined)undefined undefined undefined undefined-undefined
[27]  
Ren C(undefined)undefined undefined undefined undefined-undefined
[28]  
Wang Z(undefined)undefined undefined undefined undefined-undefined
[29]  
Hsiung CC(undefined)undefined undefined undefined undefined-undefined
[30]  
Huisken G(undefined)undefined undefined undefined undefined-undefined