The Convexity of Entire Spacelike Hypersurfaces with Constant σn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{n-1}$$\end{document} Curvature in Minkowski Space

被引:0
作者
Changyu Ren
Zhizhang Wang
Ling Xiao
机构
[1] Jilin University,School of Mathematical Science
[2] Fudan University,School of Mathematical Science
[3] University of Connecticut,Department of Mathematics
关键词
Convexity; Constant curvature hypersurfaces; Minkowski space; 53C42; 35J60; 49Q10; 53C50;
D O I
10.1007/s12220-024-01630-9
中图分类号
学科分类号
摘要
We prove that, in Minkowski space, if a spacelike, (n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-1)$$\end{document}-convex hypersurface M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} with constant σn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{n-1}$$\end{document} curvature has bounded principal curvatures, then M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} is convex. Moreover, if M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} is not strictly convex, after an Rn,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{n,1}$$\end{document} rigid motion, M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} splits as a product Mn-1×R.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}^{n-1}\times \mathbb {R}.$$\end{document}
引用
收藏
相关论文
共 38 条
[1]  
Aleksandrov AD(1958)Uniqueness theorems for surfaces in the large Vestnik Leningrad Univ. Math. 13 5-8
[2]  
Ball JM(1984)Differentiability properties of symmetric and isotropic functions Duke Math. J. 51 699-728
[3]  
Bayard P(2009)Entire spacelike hypersurfaces of constant Gauss curvature in Minkowski space J. Reine Angew. Math. 627 1-29
[4]  
Schnürer OC(1985)The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian Acta Math. 155 261-301
[5]  
Caffarelli L(2007)A constant rank theorem for solutions of fully nonlinear elliptic equations Commun. Pure Appl. Math. 60 1769-1791
[6]  
Nirenberg L(1975)Differential equations on Riemannian manifolds and their geometric application Commun. Pure Appl. Math. 28 337-354
[7]  
Spruck J(1976)Maximal spacelike hypersurfaces in the Lorentz–Minkowski spaces Ann. Math. 104 407-419
[8]  
Caffarelli L(1980)Hypersurfaces with constant scalar curvature Math. Ann. 247 81-93
[9]  
Guan P(1990)Gauss maps of spacelike constant mean curvature hypersurfaces of Minkowski space J. Differ. Geom. 32 775-817
[10]  
Ma X-N(1989)Immersed hypersurfaces with constant Weingarten curvature Math. Ann. 283 329-332