Topological Types of Isoenergy Surfaces in the System of the Chaplygin Ball with a Rotor

被引:0
作者
A. I. Zhila
机构
[1] Chair of Differential Geometry and Applications,
[2] Faculty of Mechanics and Mathematics,undefined
[3] Lomonosov Moscow State University,undefined
来源
Moscow University Mathematics Bulletin | 2020年 / 75卷
关键词
Chaplygin ball with a rotor; conformally Hamiltonian systems; isoenergy surfaces; Fomenko–Zieschang invariants;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:134 / 138
页数:4
相关论文
共 20 条
[1]  
Fomenko A. T.(1987)The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability Math. USSR Izv. 29 629-658
[2]  
Fomenko A. T.(1987)“On the topology of the three-dimensional manifolds arising in Hamiltonian mechanics,” Sov. Math Dokl. 35 529-534
[3]  
Zieschang H.(1988)Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds Russ. Math. Surv. 43 3-24
[4]  
Matveev S. V.(1989)On typical topological properties of integrable Hamiltonian systems Math. USSR Izv. 32 385-412
[5]  
Fomenko A. T.(2015)The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid J. Geom. Phys. 87 115-133
[6]  
Fomenko A. T.(2012)New approach to symmetries and singularities in integrable Hamiltonian systems Topol. Its Appl. 159 1964-1975
[7]  
Tsishang Kh.(2012)Symmetries groups of nice Morse functions on surfaces Dokl. Math. 86 691-693
[8]  
Fomenko A. T.(2008)Maximally symmetric cell decompositions of surfaces and their coverings Sb. Math. 199 1263-1353
[9]  
Nikolaenko S. S.(2002)On a ball’s rolling on a horizontal plane Regular Chaotic Dyn. 7 131-148
[10]  
Fomenko A. T.(2001)Chaplygin’s ball rolling problem is Hamiltonian Maht. Notes 70 720-723