Closed Range Type Properties of Toeplitz Operators on the Bergman Space and the Berezin Transform

被引:0
作者
Nina Zorboska
机构
[1] University of Manitoba,Department of Mathematics
来源
Complex Analysis and Operator Theory | 2019年 / 13卷
关键词
Multiplication operator; Toeplitz operator; Bergman space; Berezin transform; Closed range operator; Invertible operator; Fredholm operator; Interpolating Blaschke product; 47B35; 47A53; 30H20; 30H35; 30J10;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize the multiplication operators with closed range on the Bergman space in terms of the Berezin transform, and apply this characterization to finite products of interpolating Blaschke products. We give some necessary and some sufficient conditions for invertibility of general Toeplitz operators on the Bergman space. We determine the Fredholm Toeplitz operators with BMO1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BMO^1$$\end{document} symbols and the invertible Toeplitz operators with nonnegative symbols, when their Berezin transform is bounded and of vanishing oscillation.
引用
收藏
页码:4027 / 4044
页数:17
相关论文
共 26 条
[1]  
Axler S(1998)Compact operators via the Berezin transform Indiana Univ. Math. J. 47 387-400
[2]  
Zheng D(1998)The Berezin transform on the Toeplitz algebra Studia Math. 127 113-136
[3]  
Axler S(2005)Closed range multiplication operators on weighted Bergman spaces Nonlinear Anal. 60 37-48
[4]  
Zheng D(2005)The generalized Berezin transform and commutator ideals Pacific J. Math. 222 29-56
[5]  
Chicoń K(2015)Closed range composition operators on Hilbert function spaces J. Math. Anal. Appl. 431 841-866
[6]  
Davidson K(1998)Functions not vanishing on trivial Gleason parts of Douglas algebras Proc. Am. Math. Soc. 104 1086-1090
[7]  
Douglas R(1981)Inequalities on Bergman spaces Illinois J. Math. 25 1-11
[8]  
Ghatage P(1992)Characterization of certain classes of Hankel operators on the Bergman spaces J. Funct. Anal. 110 247-271
[9]  
Tjani M(2000)Bounded composition operators with closed range on the Dirichlet space Proc. Am. Math. Soc. 128 1109-1116
[10]  
Gorkin P(1996)Interpolating Blaschke products Pacific J. Math. 173 491-499