High-Frequency Estimates on Boundary Integral Operators for the Helmholtz Exterior Neumann Problem

被引:0
作者
J. Galkowski
P. Marchand
E. A. Spence
机构
[1] University College London,Department of Mathematics
[2] POEMS,Department of Mathematical Sciences
[3] CNRS,undefined
[4] INRIA,undefined
[5] ENSTA Paris,undefined
[6] Institut Polytechnique de Paris,undefined
[7] University of Bath,undefined
来源
Integral Equations and Operator Theory | 2022年 / 94卷
关键词
Boundary integral equation; Helmholtz; High frequency; Neumann problem; Pseudodifferential operator; Semiclassical analysis;
D O I
暂无
中图分类号
学科分类号
摘要
We study a commonly-used second-kind boundary-integral equation for solving the Helmholtz exterior Neumann problem at high frequency, where, writing Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} for the boundary of the obstacle, the relevant integral operators map L2(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\Gamma )$$\end{document} to itself. We prove new frequency-explicit bounds on the norms of both the integral operator and its inverse. The bounds on the norm are valid for piecewise-smooth Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} and are sharp up to factors of logk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log k$$\end{document} (where k is the wavenumber), and the bounds on the norm of the inverse are valid for smooth Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} and are observed to be sharp at least when Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is smooth with strictly-positive curvature. Together, these results give bounds on the condition number of the operator on L2(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\Gamma )$$\end{document}; this is the first time L2(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\Gamma )$$\end{document} condition-number bounds have been proved for this operator for obstacles other than balls.
引用
收藏
相关论文
共 157 条
[1]  
Agmon S(1975)Spectral properties of Schrödinger operators and scattering theory Annali della Scuola Normale Superiore di Pisa - Classe di Scienze Ser. 2 151-218
[2]  
Amini S(1990)On the choice of the coupling parameter in boundary integral formulations of the exterior acoustic problem Appl. Anal. 35 75-92
[3]  
Amini S(1990)A comparison between various boundary integral formulations of the exterior acoustic problem Comput. Methods Appl. Mech. Eng. 84 59-75
[4]  
Harris PJ(2005)Alternative integral equations for the iterative solution of acoustic scattering problems Quart. J. Mech. Appl. Math. 58 107-128
[5]  
Antoine X(2007)Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation ESAIM Math. Model. Numer. Anal. 41 147-35
[6]  
Darbas M(2021)An introduction to operator preconditioning for the fast iterative integral equation solution of time-harmonic scattering problems Multisc. Sci. Eng. 3 1-774
[7]  
Antoine X(2005)An improved on-surface radiation condition for acoustic scattering problems in the high-frequency spectrum C.R. Math. 340 769-53
[8]  
Darbas M(2007)A refined Galerkin error and stability analysis for highly indefinite variational problems SIAM J. Numer. Anal. 45 37-267
[9]  
Antoine X(2016)Sharp high-frequency estimates for the Helmholtz equation and applications to boundary integral equations SIAM J. Math. Anal. 48 229-69
[10]  
Darbas M(2011)Condition number estimates for combined potential boundary integral operators in acoustics and their boundary element discretisation Numer. Methods Partial Differ. Equ. 27 31-731